scholarly journals An Overview of Pathogen Recognition Receptors for Innate Immunity in Dental Pulp

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ji-Hyun Jang ◽  
Hee Woong Shin ◽  
Jung Min Lee ◽  
Hyeon-Woo Lee ◽  
Eun-Cheol Kim ◽  
...  

Pathogen recognition receptors (PRRs) are a class of germ line-encoded receptors that recognize pathogen-associated molecular patterns (PAMPs). The activation of PRRs is crucial for the initiation of innate immunity, which plays a key role in first-line defense until more specific adaptive immunity is developed. PRRs differ in the signaling cascades and host responses activated by their engagement and in their tissue distribution. Currently identified PRR families are the Toll-like receptors (TLRs), the C-type lectin receptors (CLRs), the nucleotide-binding oligomerization domain-like receptors (NLRs), the retinoic acid-inducible gene-I-like receptors (RLRs), and the AIM2-like receptor (ALR). The environment of the dental pulp is substantially different from that of other tissues of the body. Dental pulp resides in a low compliance root canal system that limits the expansion of pulpal tissues during inflammatory processes. An understanding of the PRRs in dental pulp is important for immunomodulation and hence for developing therapeutic targets in the field of endodontics. Here we comprehensively review recent finding on the PRRs and the mechanisms by which innate immunity is activated. We focus on the PRRs expressed on dental pulp and periapical tissues and their role in dental pulp inflammation.

2017 ◽  
Vol 90 ◽  
pp. 64-73 ◽  
Author(s):  
Reza Nosratabadi ◽  
Seyed Moayed Alavian ◽  
Mohammad Zare-Bidaki ◽  
Vahid Mohammadi Shahrokhi ◽  
Mohammad Kazemi Arababadi

2021 ◽  
Vol 19 (2) ◽  
pp. 101-106
Author(s):  
K. A. Myasoedova ◽  
I. V. Firsova ◽  
S. V. Krajnov ◽  
A. N. Popova

Pulpitis is one of the most prevalence complication of dental caries. In the structure of visits for dental care, the diagnosis of pulpitis accounts for 14 – 20%. Preservation of the vitality of the pulp is very important for the tooth and for the body as a whole. Since the death of the neurovascular bundle leads to a abnormalities of the protective, trophic and plastic functions of the tooth, causing the loss of its functional signifcance, the development of complications and, as a consequence, removal of a tooth. So, conservative methods of pulpitis treatment must be used to prevent the spread of inflammation in the dental pulp. The success of both direct and indirect biological methods for treating pulpitis in more than 50% of cases depends on the drugs and materials used for the pulp. In the arsenal of dentists there are appropriate new generation drugs with a suffciently high evidential base, however, the problem of fnding the "ideal" material is still crucial.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2221-2222 ◽  
Author(s):  
Richard S. Kornbluth

Recent notions of the immune response focus on the idea that innate pathogen recognition receptors (PRRs) lead to adaptive immune responses.


Author(s):  
Caterina Ledda ◽  
Claudia Lombardo ◽  
Elisabetta A. Tendi ◽  
Maria Hagnas ◽  
Gianluca Paravizzini ◽  
...  

: Fluoro-edenite (FE) is an asbestos-like amphibole present in the bentonitic lavas extracted from a stone quarry in Biancavilla, a village sited in the Etnean Volcanic Area (Italy). : Thoracic pathologies are the results of excessive inflammatory processes that are the early response of the immune system to inhaled fibers. As demonstrated for asbestos, fibers may trigger immune system cells in an acute and/or chronic manner. This review aims to clarify the pathways of inflammation in workers exposed to FE fibers. : Based on the articles reviewed, it seems that a permanent stimulus created by repeatedly inhaling the FE fibers and their persistence in the body can act as trigger both in promoting inflammatory processes and in immunological induction of autoimmune disease.


2021 ◽  
Vol 22 (10) ◽  
pp. 5251
Author(s):  
Ming-Yieh Peng ◽  
Wen-Chih Liu ◽  
Jing-Quan Zheng ◽  
Chien-Lin Lu ◽  
Yi-Chou Hou ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still an ongoing global health crisis. Immediately after the inhalation of SARS-CoV-2 viral particles, alveolar type II epithelial cells harbor and initiate local innate immunity. These particles can infect circulating macrophages, which then present the coronavirus antigens to T cells. Subsequently, the activation and differentiation of various types of T cells, as well as uncontrollable cytokine release (also known as cytokine storms), result in tissue destruction and amplification of the immune response. Vitamin D enhances the innate immunity required for combating COVID-19 by activating toll-like receptor 2. It also enhances antimicrobial peptide synthesis, such as through the promotion of the expression and secretion of cathelicidin and β-defensin; promotes autophagy through autophagosome formation; and increases the synthesis of lysosomal degradation enzymes within macrophages. Regarding adaptive immunity, vitamin D enhances CD4+ T cells, suppresses T helper 17 cells, and promotes the production of virus-specific antibodies by activating T cell-dependent B cells. Moreover, vitamin D attenuates the release of pro-inflammatory cytokines by CD4+ T cells through nuclear factor κB signaling, thereby inhibiting the development of a cytokine storm. SARS-CoV-2 enters cells after its spike proteins are bound to angiotensin-converting enzyme 2 (ACE2) receptors. Vitamin D increases the bioavailability and expression of ACE2, which may be responsible for trapping and inactivating the virus. Activation of the renin–angiotensin–aldosterone system (RAS) is responsible for tissue destruction, inflammation, and organ failure related to SARS-CoV-2. Vitamin D inhibits renin expression and serves as a negative RAS regulator. In conclusion, vitamin D defends the body against SARS-CoV-2 through a novel complex mechanism that operates through interactions between the activation of both innate and adaptive immunity, ACE2 expression, and inhibition of the RAS system. Multiple observation studies have shown that serum concentrations of 25 hydroxyvitamin D are inversely correlated with the incidence or severity of COVID-19. The evidence gathered thus far, generally meets Hill’s causality criteria in a biological system, although experimental verification is not sufficient. We speculated that adequate vitamin D supplementation may be essential for mitigating the progression and severity of COVID-19. Future studies are warranted to determine the dosage and effectiveness of vitamin D supplementation among different populations of individuals with COVID-19.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Marina García-Miguel ◽  
M. Julieta González ◽  
Rodrigo Quera ◽  
Marcela A. Hermoso

Innate immunity prevents pathogens from entering and spreading within the body. This function is especially important in the gastrointestinal tract and skin, as these organs have a large surface contact area with the outside environment. In the intestine, luminal commensal bacteria are necessary for adequate food digestion and play a crucial role in tolerance to benign antigens. Immune system damage can create an intestinal inflammatory response, leading to chronic disease including inflammatory bowel diseases (IBD). Ulcerative colitis (UC) is an IBD of unknown etiology with increasing worldwide prevalence. In the intestinal mucosa of UC patients, there is an imbalance in the IL-33/ST2 axis, an important modulator of the innate immune response. This paper reviews the role of the IL-33/ST2 system in innate immunity of the intestinal mucosa and its importance in inflammatory bowel diseases, especially ulcerative colitis.


Sign in / Sign up

Export Citation Format

Share Document