scholarly journals Research Advances in Tissue Engineering Materials for Sustained Release of Growth Factors

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hai-yang Zhao ◽  
Jiang Wu ◽  
Jing-jing Zhu ◽  
Ze-cong Xiao ◽  
Chao-chao He ◽  
...  

Growth factors are a class of cytokines that stimulate cell growth and are widely used in clinical practice, such as wound healing, revascularization, bone repair, and nervous system disease. However, free growth factors have a short half-life and are instablein vivo. Therefore, the search of excellent carriers to enhance sustained release of growth factorsin vivohas become an area of intense research interest. The development of controlled-release systems that protect the recombinant growth factors from enzymatic degradation and provide sustained delivery at the injury site during healing should enhance the growth factor’s application in tissue regeneration. Thus, this study reviews current research on commonly used carriers for sustained release of growth factors and their sustained release effects for preservation of their bioactivity and their accomplishment in tissue engineering approaches.

Nanomedicine ◽  
2022 ◽  
Author(s):  
Jihye Baek ◽  
Kwang Il Lee ◽  
Ho Jong Ra ◽  
Martin K Lotz ◽  
Darryl D D'Lima

Aim: To mimic the ultrastructural morphology of the meniscus with nanofiber scaffolds coupled with controlled growth factor delivery to modulate cellular performance for tissue engineering of menisci. Methods: The authors functionalized collagen nanofibers by conjugating heparin to the following growth factors for sustained release: PDGF-BB, TGF-β1 and CTGF. Results: Incorporating growth factors increased human meniscal and synovial cell viability, proliferation and infiltration in vitro, ex vivo and in vivo; upregulated key genes involved in meniscal extracellular matrix synthesis; and enhanced generation of meniscus-like tissue. Conclusion: The authors' results indicate that functionalizing collagen nanofibers can create a cell-favorable micro- and nanoenvironment and can serve as a system for sustained release of bioactive factors.


2009 ◽  
Vol 21 (03) ◽  
pp. 149-155 ◽  
Author(s):  
Hsu-Wei Fang

Cartilage injuries may be caused by trauma, biomechanical imbalance, or degenerative changes of joint. Unfortunately, cartilage has limited capability to spontaneous repair once damaged and may lead to progressive damage and degeneration. Cartilage tissue-engineering techniques have emerged as the potential clinical strategies. An ideal tissue-engineering approach to cartilage repair should offer good integration into both the host cartilage and the subchondral bone. Cells, scaffolds, and growth factors make up the tissue engineering triad. One of the major challenges for cartilage tissue engineering is cell source and cell numbers. Due to the limitations of proliferation for mature chondrocytes, current studies have alternated to use stem cells as a potential source. In the recent years, a lot of novel biomaterials has been continuously developed and investigated in various in vitro and in vivo studies for cartilage tissue engineering. Moreover, stimulatory factors such as bioactive molecules have been explored to induce or enhance cartilage formation. Growth factors and other additives could be added into culture media in vitro, transferred into cells, or incorporated into scaffolds for in vivo delivery to promote cellular differentiation and tissue regeneration.Based on the current development of cartilage tissue engineering, there exist challenges to overcome. How to manipulate the interactions between cells, scaffold, and signals to achieve the moderation of implanted composite differentiate into moderate stem cells to differentiate into hyaline cartilage to perform the optimum physiological and biomechanical functions without negative side effects remains the target to pursue.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Susan D’Souza ◽  
Jabar A. Faraj ◽  
Stefano Giovagnoli ◽  
Patrick P. DeLuca

The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25) were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug.


Biomaterials ◽  
2008 ◽  
Vol 29 (22) ◽  
pp. 3245-3252 ◽  
Author(s):  
Diederik H.R. Kempen ◽  
Lichun Lu ◽  
Teresa E. Hefferan ◽  
Laura B. Creemers ◽  
Avudaiappan Maran ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2993
Author(s):  
Arbi Aghali

Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tian Ding ◽  
Wenyan Kang ◽  
Jianhua Li ◽  
Lu Yu ◽  
Shaohua Ge

Abstract Background The regeneration of periodontal bone defect remains a vital clinical challenge. To date, numerous biomaterials have been applied in this field. However, the immune response and vascularity in defect areas may be key factors that are overlooked when assessing the bone regeneration outcomes of biomaterials. Among various regenerative therapies, the up-to-date strategy of in situ tissue engineering stands out, which combined scaffold with specific growth factors that could mimic endogenous regenerative processes. Results Herein, we fabricated a core/shell fibrous scaffold releasing basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) in a sequential manner and investigated its immunomodulatory and angiogenic properties during periodontal bone defect restoration. The in situ tissue engineering scaffold (iTE-scaffold) effectively promoted the angiogenesis of periodontal ligament stem cells (PDLSCs) and induced macrophage polarization into pro-healing M2 phenotype to modulate inflammation. The immunomodulatory effect of macrophages could further promote osteogenic differentiation of PDLSCs in vitro. After being implanted into the periodontal bone defect model, the iTE-scaffold presented an anti-inflammatory response, provided adequate blood supply, and eventually facilitated satisfactory periodontal bone regeneration. Conclusions Our results suggested that the iTE-scaffold exerted admirable effects on periodontal bone repair by modulating osteoimmune environment and angiogenic activity. This multifunctional scaffold holds considerable promise for periodontal regenerative medicine and offers guidance on designing functional biomaterials. Graphic Abstract


2018 ◽  
Vol 5 (3-4) ◽  
pp. 97-109 ◽  

Bone diseases and injuries have a major impact on the quality of life. Classical treatments for bone repair/regeneration/replacement have various disadvantages. Bone tissue engineering (BTE) received a great attention in the last years. Natural polymers are intensively studied in this field due to their properties (biocompatibility, biodegradability, abundance in nature, high processability). Unfortunately, their mechanical properties are poor, which is why synthetic polymers or ceramics are added in order to provide the optimal compressive, elastic or fatigue strength. Moreover, growth factors, vitamins, or antimicrobial substances are also added to enhance the cell behavior (attachment, proliferation, and differentiation). In this review, new scientific results regarding potential applications of chitosan-, alginate-, and gelatin based biocomposites in BTE will be provided, along with their in vitro and/or in vivo tests.


Author(s):  
Xuan Zhao ◽  
Xin Zuo ◽  
Jing Zhong ◽  
Bowen Wang ◽  
Saiqun Li ◽  
...  

Ocular chemical burns are potentially blinding ocular injuries and require urgent management. Amniotic membrane (AM) transplantation is an effective surgical treatment, one of the reasons is because AM is a rich source of growth factors that can promote epithelialization and wound healing. However, growth factors will be gradually lost and insufficient after preparation process and long-time storage, leading to unsatisfactory therapeutic effects. Herein, we present a modified AM (AM-HEP) for the supplement and sustained release of growth factor by surface grafting heparin for treatment of ocular chemical burns. Heparin grafting rate and stability, microstructure, physical property, and sustained release of epithelial growth factor (EGF) of AM-HEP were characterized. Biocompatibility and ability to promote corneal epithelial cell growth and migration were evaluated and compared with a biological amnion, which is available on the market in vitro. The therapeutic effects of AM-HEP combined with EGF (AM-HEP@EGF) in vivo had been evaluated in a model of mouse corneal alkali burn. The results indicated that heparin was introduced into AM and maintain stability over 3 weeks at 37°C. The modification process of AM-HEP did not affect microstructure and physical property after comparing with non-modified AM. EGF could be combined quickly and effectively with AM-HEP; the sustained release could last for more than 14 days. AM-HEP@EGF could significantly promote corneal epithelial cell growth and migration, compared with non-modified AM and control group. Faster corneal epithelialization was observed with the transplantation of AM-HEP@EGF in vivo, compared with the untreated control group. The corneas in the AM-HEP@EGF group have less inflammation and were more transparent than those in the control group. The results from in vitro and in vivo experiments demonstrated that AM-HEP@EGF could significantly enhance the therapeutic effects. Taken together, AM-HEP@EGF is exhibited to be a potent clinical application in corneal alkali burns through accelerating corneal epithelial wound healing.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jozafina Haj ◽  
Tharwat Haj Khalil ◽  
Mizied Falah ◽  
Eyal Zussman ◽  
Samer Srouji

While biologically feasible, bone repair is often inadequate, particularly in cases of large defects. The search for effective bone regeneration strategies has led to the emergence of bone tissue engineering (TE) techniques. When integrating electrospinning techniques, scaffolds featuring randomly oriented or aligned fibers, characteristic of the extracellular matrix (ECM), can be fabricated. In parallel, mesenchymal stem cells (MSCs), which are capable of both self-renewing and differentiating into numerous tissue types, have been suggested to be a suitable option for cell-based tissue engineering therapies. This work aimed to create a novel biocompatible hybrid scaffold composed of electrospun polymeric nanofibers combined with osteoconductive ceramics, loaded with human MSCs, to yield a tissue-like construct to promote in vivo bone formation. Characterization of the cell-embedded scaffolds demonstrated their resemblance to bone tissue extracellular matrix, on both micro- and nanoscales and MSC viability and integration within the electrospun nanofibers. Subcutaneous implantation of the cell-embedded scaffolds in the dorsal side of mice led to new bone, muscle, adipose, and connective tissue formation within 8 weeks. This hybrid scaffold may represent a step forward in the pursuit of advanced bone tissue engineering scaffolds.


2001 ◽  
Vol 10 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Gregory A. Helm ◽  
Hayan Dayoub ◽  
John A. Jane

In the prototypical method for inducing spinal fusion, autologous bone graft is harvested from the iliac crest or local bone removed during the spinal decompression. Although autologous bone remains the “gold standard” for stimulating bone repair and regeneration, modern molecular biology and bioengineering techniques have produced unique materials that have potent osteogenic activities. Recombinant human osteogenic growth factors, such as bone morphogenetic proteins, transforming growth factor–β, and platelet-derived growth factor are now produced in highly concentrated and pure forms and have been shown to be extremely potent bone-inducing agents when delivered in vivo in rats, dogs, primates, and humans. The delivery of pluripotent mesenchymal stem cells (MSCs) to regions requiring bone formation is also compelling, and it has been shown to be successful in inducing osteogenesis in numerous pre-clinical studies in rats and dogs. Finally, the identification of biological and nonbiological scaffolding materials is a crucial component of future bone graft substitutes, not only as a delivery vehicle for bone growth factors and MSCs but also as an osteoconductive matrix to stimulate bone deposition directly. In this paper, the currently available bone graft substitutes will be reviewed and the authors will discuss the novel therapeutic approaches that are currently being developed for use in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document