scholarly journals Tropical Atlantic Contributions to Strong Rainfall Variability Along the Northeast Brazilian Coast

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
G. A. Hounsou-gbo ◽  
M. Araujo ◽  
B. Bourlès ◽  
D. Veleda ◽  
J. Servain

Tropical Atlantic (TA) Ocean-atmosphere interactions and their contributions to strong variability of rainfall along the Northeast Brazilian (NEB) coast were investigated for the years 1974–2008. The core rainy seasons of March-April and June-July were identified for Fortaleza (northern NEB; NNEB) and Recife (eastern NEB; ENEB), respectively. Lagged linear regressions between sea surface temperature (SST) and pseudo wind stress (PWS) anomalies over the entire TA and strong rainfall anomalies at Fortaleza and Recife show that the rainfall variability of these regions is differentially influenced by the dynamics of the TA. When the Intertropical Convergence Zone is abnormally displaced southward a few months prior to the NNEB rainy season, the associated meridional mode increases humidity and precipitation during the rainy season. Additionally, this study shows predictive effect of SST, meridional PWS, and barrier layer thickness, in the Northwestern equatorial Atlantic, on the NNEB rainfall. The dynamical influence of the TA on the June-July ENEB rainfall variability shows a northwestward-propagating area of strong, positively correlated SST from the southeastern TA to the southwestern Atlantic warm pool (SAWP) offshore of Brazil. Our results also show predictive effect of SST, zonal PWS, and mixed layer depth, in the SAWP, on the ENEB rainfall.

Ocean Science ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 63-73 ◽  
Author(s):  
M. Araujo ◽  
C. Limongi ◽  
J. Servain ◽  
M. Silva ◽  
F. S. Leite ◽  
...  

Abstract. High-resolution hydrographic observations of temperature and salinity are used to analyze the formation and distribution of isothermal depth (ZT), mixed depth (ZM) and barrier layer thickness (BLT) in a section of the southwestern Atlantic (0°30´ N–14°00´ S; 31°24´–41°48´ W), adjacent to the northeastern Brazilian coast. Analyzed data consists of 279 CTD casts acquired during two cruises under the Brazilian REVIZEE Program. One occurred in late austral winter (August–October 1995) and another in austral summer (January–April 1997). Oceanic observations are compared to numerical modeling results obtained from the French Mercator-Coriolis Program. Results indicate that the intrusion of subtropical Salinity Maximum Waters (SMW) is the major process contributing to the seasonal barrier layer formation. These waters are brought by the South Equatorial Current (SEC), from the subtropical region, into the western tropical Atlantic boundary. During late austral winter southeastern trade winds are more intense and ITCZ precipitations induce lower surface salinity values near the equator. During this period a 5–90 m thick BLT (median = 15 m) is observed and BLT > 30 m is restricted to latitudes higher than 8° S, where the intrusion of salty waters between 8°–12.3° S creates shallow mixed layers over deep (ZT ≥ 90 m) isothermal layers. During austral summer, shallow isothermal and mixed layers prevail, when northeasterly winds are predominant and evaporation overcomes precipitation, causing saltier waters at the surface/subsurface layers. During that period observed BLT varies from 5 to 70 m and presents thicker median value of 35 m, when comparing to the winter. Furthermore, BLT ≥ 30 m is observed not only in the southernmost part of the study area, as verified during late winter, but in the latitude range 2°–14° S, where near-surface salty waters are transported westward by the SEC flow. These results indicate that the inclusion of salinity dynamics and its variability are necessary for studying mixed and barrier layer behaviors in the tropical Atlantic, where ocean-atmosphere coupling is known to be stronger.


2005 ◽  
Vol 18 (20) ◽  
pp. 4168-4184 ◽  
Author(s):  
Gregory R. Foltz ◽  
Michael J. McPhaden

Abstract Recent observations have shown evidence of intraseasonal oscillations (with periods of approximately 1–2 months) in the northern and southern tropical Atlantic trade winds. In this paper, the oceanic response to the observed intraseasonal wind variability is addressed through an analysis of the surface mixed layer heat balance, focusing on three locations in the northwestern tropical Atlantic where in situ measurements from moored buoys are available (14.5°N, 51°W; 15°N, 38°W; and 18°N, 34°W). It is found that local heat storage at all three locations is balanced primarily by wind-induced latent heat loss, which is the same mechanism that is believed to play a dominant role on interannual and decadal time scales in the region. It is also found that the intraseasonal wind speed oscillations are linked to changes in surface wind convergence and convection over the western equatorial Atlantic warm pool. These atmospheric circulation anomalies and wind-induced SST anomalies potentially feed back on one another to affect longer time-scale variability in the region.


2021 ◽  
Author(s):  
Koffi Worou ◽  
Hugues Goosse ◽  
Thierry Fichefet

<p>Much of the rainfall variability in the Guinean coast area during the boreal summer is driven by the sea surface temperature (SST) variations in the eastern equatorial Atlantic, amplified by land-atmosphere interactions. This oceanic region corresponds to the center of action of the Atlantic Equatorial mode, also termed Atlantic Niño (ATL3), which is the leading SST mode of variability in the tropical Atlantic basin. In years of positive ATL3, above normal SST conditions in the ATL3 area weaken the sea level pressure gradient between the West African lands and the ocean, which in turn reduces the monsoon flow penetration into Sahel. Subsequently, the rainfall increases over the Guinean coast area. According to observations and climate models, the relation between the Atlantic Niño and the rainfall in coastal Guinea is stationary over the 20<sup>th</sup> century. While this relation remains unchanged over the 21<sup>st</sup> century in climate model projections, the strength of the teleconnection is reduced in a warmer climate. The weakened ATL3 effect on the rainfall over the tropical Atlantic (in years of positive ATL3) has been attributed to the stabilization of the atmosphere column above the tropical Atlantic. Analysis of historical and high anthropogenic emission scenario (the Shared Socioeconomic Pathways 5-8.5) simulations from 31 models participating in the sixth phase of the Coupled Model Intercomparison Project suggests an additional role of the Bjerkness feedback. A weakened SST amplitude related to ATL3 positive phases reduces the anomalous westerlies, which in turn increases the upwelling cooling effect on the sea surface. Both the Guinean coast region and the equatorial Atlantic experiment the projected rainfall reduction associated with ATL3, with a higher confidence over the ocean than over the coastal lands.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 886
Author(s):  
Abdul Azim Amirudin ◽  
Ester Salimun ◽  
Fredolin Tangang ◽  
Liew Juneng ◽  
Muhamad Zuhairi

This study investigates the individual and combined impacts of El Niño and the positive Indian Ocean Dipole (IOD) on the Southeast Asia (SEA) rainfall variability. Using composite and partial correlation techniques, it is shown that both inter-annual events have individually distinct impacts on the SEA rainfall anomaly distribution. The results showed that the impacts of the co-occurrence of El Niño and IOD events are significant compared to the individual effects of pure El Niño or pure IOD. During June-July-August and September-October-November, the individual impacts of the pure El Niño and IOD events are similar but less significant. Both events caused negative impacts over the southern part of SEA during June-July-August (JJA) and propagated northeastward/eastward during September-October-November (SON). Thus, there are significant negative impacts over the southern part of SEA during the co-occurrence of both events. The differential impacts on the anomalous rainfall patterns are due to the changes in the sea surface temperature (SST) surrounding the region. Additionally, the differences are also related to the anomalous regional atmospheric circulations that interact with the regional SST. The anomalous Walker circulation that connects the Indian Ocean and tropical Pacific Ocean also plays a significant role in determining the regional anomalous rainfall patterns.


2021 ◽  
Author(s):  
Qiong Zhang ◽  
Ellen Berntell ◽  
Qiang Li ◽  
Fredrik Charpentier Ljungqvist

AbstractThere is a well-known mode of rainfall variability associating opposite hydrological conditions over the Sahel region and the Gulf of Guinea, forming a dipole pattern. Previous meteorological observations show that the dipole pattern varies at interannual timescales. Using an EC-Earth climate model simulation for last millennium (850–1850 CE), we investigate the rainfall variability in West Africa over longer timescales. The 1000-year-long simulation data show that this rainfall dipole presents at decadal to multidecadal and centennial variability and long-term trend. Using the singular value decomposition (SVD) analysis, we identified that the rainfall dipole present in the first SVD mode with 60% explained variance and associated with the variabilities in tropical Atlantic sea surface temperature (SST). The second SVD mode shows a monopole rainfall variability pattern centred over the Sahel, associated with the extra-tropical Atlantic SST variability. We conclude that the rainfall dipole-like pattern is a natural variability mode originated from the local ocean–atmosphere-land coupling in the tropical Atlantic basin. The warm SST anomalies in the equatorial Atlantic Ocean favour an anomalous low pressure at the tropics. This low pressure weakens the meridional pressure gradient between the Saharan Heat Low and the tropical Atlantic. It leads to anomalous northeasterly, reduces the southwesterly moisture flux into the Sahel and confines the Gulf of Guinea's moisture convergence. The influence from extra-tropical climate variability, such as Atlantic multidecadal oscillation, tends to modify the rainfall dipole pattern to a monopole pattern from the Gulf of Guinea to Sahara through influencing the Sahara heat low. External forcing—such as orbital forcing, solar radiation, volcanic and land-use—can amplify/dampen the dipole mode through thermal forcing and atmosphere dynamical feedback.


2006 ◽  
Vol 19 (20) ◽  
pp. 5227-5252 ◽  
Author(s):  
Serena Illig ◽  
Boris Dewitte

Abstract The relative roles played by the remote El Niño–Southern Oscillation (ENSO) forcing and the local air–sea interactions in the tropical Atlantic are investigated using an intermediate coupled model (ICM) of the tropical Atlantic. The oceanic component of the ICM consists of a six-baroclinic mode ocean model and a simple mixed layer model that has been validated from observations. The atmospheric component is a global atmospheric general circulation model developed at the University of California, Los Angeles (UCLA). In a forced context, the ICM realistically simulates both the sea surface temperature anomaly (SSTA) variability in the equatorial band, and the relaxation of the Atlantic northeast trade winds and the intensification of the equatorial westerlies in boreal spring that usually follows an El Niño event. The results of coupled experiments with or without Pacific ENSO forcing and with or without explicit air–sea interactions in the equatorial Atlantic indicate that the background energy in the equatorial Atlantic is provided by ENSO. However, the time scale of the variability and the magnitude of some peculiar events cannot be explained solely by ENSO remote forcing. It is demonstrated that the peak of SSTA variability in the 1–3-yr band as observed in the equatorial Atlantic is due to the local air–sea interactions and is not a linear response to ENSO. Seasonal phase locking in boreal summer is also the result of the local coupling. The analysis of the intrinsic sustainable modes indicates that the Atlantic El Niño is qualitatively a noise-driven stable system. Such a system can produce coherent interdecadal variability that is not forced by the Pacific or extraequatorial variability. It is shown that when a simple slab mixed layer model is embedded into the system to simulate the northern tropical Atlantic (NTA) SST variability, the warming over NTA following El Niño events have characteristics (location and peak phase) that depend on air–sea interaction in the equatorial Atlantic. In the model, the interaction between the equatorial mode and NTA can produce a dipolelike structure of the SSTA variability that evolves at a decadal time scale. The results herein illustrate the complexity of the tropical Atlantic ocean–atmosphere system, whose predictability jointly depends on ENSO and the connections between the Atlantic modes of variability.


2021 ◽  
Author(s):  
Fanny Chenillat ◽  
Julien Jouanno ◽  
Serena Illig ◽  
Founi Mesmin Awo ◽  
Gaël Alory ◽  
...  

<div><span>Surface chlorophyll-<em>a </em>concentration (CHL-<em>a</em>) remotely observed by satellite shows a marked seasonal and interannual variability in the Tropical Atlantic, with potential consequences on the marine trophic web. Seasonal and interannual CHL-<em>a </em>variability peaks in boreal summer and shows maxima in the equatorial Atlantic region at 10˚W, spreading from 0 to 30˚W. In this study, we analyze how the remotely-sensed surface CHL-<em>a </em>responds to the leading climate modes affecting the interannual equatorial Atlantic variability over the 1998-2018 period, namely the Atlantic Zonal Mode (AZM) and the North Tropical Atlantic Mode (NTA, also known as the Atlantic Meridional Mode). The AZM is characterized by anomalous warming (or cooling) along the eastern equatorial band. In contrast, the NTA is characterized by an interhemispheric pattern of the sea surface temperature (SST), with anomalous warm (cold) conditions in the north tropical Atlantic region and weak negative (positive) SST anomalies south of the equator. We show that both modes significantly drive the interannual Tropical Atlantic surface CHL-<em>a </em>variability, with different timings and contrasted modulation on the eastern and western portions of the cold tongue area. Our results also reveal that the NTA slightly dominates (40%) the summer tropical Atlantic interannual variability over the last two decades, most probably because of a positive phase of the Atlantic multidecadal oscillation. For each mode of variability, we analyze an event characterized by an extreme negative sea surface temperature (SST) anomaly in the Atlantic equatorial band. Both modes are associated with a positive CHL-<em>a </em>anomaly at the equator. In 2002, a negative phase of the NTA led to cold SST anomaly and high positive CHL-<em>a </em>in the western portion of the cold tongue, peaking in June-July and lasting until the end of the year. In contrast, in 2005, a negative phase of the AZM drove cool temperature and positive CHL-<em>a </em>in the eastern equatorial band, with a peak in May-June and almost no signature after August. Such contrasted year to year conditions can affect the marine ecosystem by changing temporal and spatial trophic niches for pelagic predators, thus inducing significant variations for ecosystem functioning and fisheries.</span></div>


2021 ◽  
Author(s):  
Ingo Richter ◽  
Yu Kosaka ◽  
Hiroki Tokinaga ◽  
Shoichiro Kido

<p>The potential influence of the tropical Atlantic on the development of ENSO has received increased attention over recent years. In particular equatorial Atlantic variability (also known as the Atlantic zonal mode or AZM) has been shown to be anticorrelated with ENSO, i.e. cold AZM events in boreal summer (JJA) tend to be followed by El Niño in winter (DJF), and vice versa for warm AZM events. One problem with disentangling the two-way interaction between the equatorial Atlantic and Pacific is that both ENSO and the AZM tend to develop in boreal spring (MAM).</p><p>Here we use a set of GCM sensitivity experiments to quantify the strength of the Atlantic-Pacific link. The starting point is a 1000-year free-running control simulation with the GFDL CM 2.1 model. From this control simulation, we pick years in which a cold AZM event in JJA is followed by an El Niño in DJF. These years serve as initial conditions for “perfect model” prediction experiments with 10 ensemble members each. In the control experiments, the predictions evolve freely for 12 months from January 1 of each selected year. In the second set of predictions, SSTs are gradually relaxed to climatology in the tropical Atlantic, so that the cold AZM event is suppressed. In the third set of predictions, we restore the tropical Pacific SSTs to climatology, so that the El Niño event is suppressed.</p><p>The results suggest that, on average, the tropical Atlantic SST anomalies increase the strength of El Niño in the following winter by about 10-20%. If, on the other hand, El Niño development is suppressed, the amplitude of the cold AZM event also reduces by a similar amount. The results suggest that, in the context of this GCM, the influence of AZM events on ENSO development is relatively weak but not negligible. The fact that ENSO also influences the AZM in boreal spring highlights the complex two-way interaction between these two modes of variability.</p>


2013 ◽  
Vol 73 (3) ◽  
pp. 533-542 ◽  
Author(s):  
RC. Pontes ◽  
RT. Santori ◽  
FC. Gonçalves e Cunha ◽  
JAL. Pontes

Rocky seashores are low granitic hills distributed along the southeastern Brazilian coast with xeric-like vegetation due to the shallow soil. Knowledge on amphibian communities and their reproductive patterns is especially reduced on this kind of environment. Herein, we present a framework of two years monitoring an amphibian community at a rocky seashore environment located at the protected area of Parque Estadual da Serra da Tiririca, municipality of Niterói, state of Rio de Janeiro, Brazil. We conducted diurnal and nocturnal searches for frogs in tank bromeliads, rocky surface and shrubby vegetation. Annual pattern of breeding activity of anurans was also estimated. Individuals of the most abundant tank-bromeliad, Alcantarea glaziouana were collected and measured according to several variables to understanding the selection of bromeliads by frogs. We checked the influence of the environmental conditions on amphibian abundance, association between the bromeliads measures, and the water storage in the tank. We recorded the species: Scinax aff. x-signatus; S. cuspidatus; S. littoreus; Thoropa miliaris and Gastrotheca sp. Bromeliads were the preferential habitat used by anurans. The nocturnal habit was predominant for all species and during diurnal searches, the specimens were found sheltered in bromeliads axils. The number of calling males as well as amphibian abundance was associated with the rainiest and warmest period of the year. The species S. littoreus was observed in breeding activity in the majority of sample period. Adult calling males of T. miliaris were observed especially in the rainy season. Rainfall and temperature combined are positively correlated to the total number of captured amphibians. However, individually, rainfall was not significantly correlated, while temperature was positively correlated with the amphibian abundance. Water storage capacity by bromeliads was correlated to characteristics and size of the plant. In the rainy season, the height of the plant and the diameter on top view were correlated with the occurrence of amphibians, while during the driest period there was no correlation among variables and the bromeliad usage by amphibians. Recorded species were strongly associated to the Atlantic Forest domain. Nevertheless, the occupation of rocky seashores by anurans may be more associated with the specialized reproductive modes presented by species, since there is no permanent water available in ponds or streams.


Sign in / Sign up

Export Citation Format

Share Document