scholarly journals A Comparison of Mine Seismic Discriminators Based on Features of Source Parameters to Waveform Characteristics

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ju Ma ◽  
Guoyan Zhao ◽  
Longjun Dong ◽  
Guanghui Chen ◽  
Chuxuan Zhang

To find efficient methods for classifying mine seismic events, two features extraction approaches were proposed. Features of source parameters including the seismic moment, the seismic energy, the energy ratio of S- to P-wave, the static stress drop, time of occurrence, and the number of triggers were selected, counted, and analyzed in approach I. Waveform characteristics consisting of two slope values and the coordinates of the first peak and the maximum peak were extracted as the discriminating parameters in approach II. The discriminating performance of the two approaches was compared and discussed by applying the Bayes discriminant analysis to the characteristic parameters extracted. Classification results show that 83.5% of the original grouped cases are correctly classified by approach I, and 97.1% of original grouped cases are correctly classified by approach II. The advantages and limitations pertaining to each classifier were discussed by plotting the event magnitude versus sample number. Comparative analysis shows that the proposed method of approach II not only has a low misjudgment rate but also displays relative constancy when the testing samples fluctuate with seismic magnitude and energy.


1991 ◽  
Vol 81 (2) ◽  
pp. 553-575 ◽  
Author(s):  
Michael Fehler ◽  
W. Scott Phillips

Abstract An inversion that fits spectra of earthquake waveforms and gives robust estimates of corner frequency and low-frequency spectral amplitude has been used to determine source parameters of 223 microearthquakes induced by hydraulic fracturing in granodiorite. Assuming a ω−2 source model, the inversion fits the P-wave spectra of microearthquake waveforms to determine individual values of corner frequency and low-frequency spectral amplitude for each event and one average frequency-independent Q for all source-receiver paths. We also implemented a constraint that stress drops of all microearthquakes be similar but not equal and found that this constraint did not significantly degrade the quality of the fits to the spectra. The waveforms analyzed were recorded by a borehole seismometer. The P-wave Q was found to be 1070. For Q values as low as 600 and as high as 3000, the misfit between model and spectra increased by less than 5 per cent and the average corner frequency changed by less than 15 per cent from those obtained with a Q of 1070. Average stress drop was 3.7 bars. Seismic moments obtained from spectra ranged from 1013 to 1018 dyne-cm. The low stress drops are interpreted to result from underestimation of the actual stress drops because of a nonuniform distribution of stress drop and slip along the fault planes. Spatially varying stress drops and slips result from the strong rock heterogeneity due to the injection of fluid into the rock. Stress drops were found to be larger near the edges of the seismic zone, in regions that had not been seismically active during previous injections. The seismic moments determined from spectra were used to obtain a coda length-to-moment relation. Then, moments were estimated for 1149 events from measurements of coda lengths from events whose moments could not be measured from spectra because of saturation or a low signal-to-noise ratio. The constant of proportionality between cumulative number of events and seismic moment is higher than that found for tectonic regions. The slope is so high that the seismic energy release is dominated by the large number of small events. In the absence of information about the number of events smaller than we studied, we cannot estimate the total seismic energy released by the hydraulic injection.



1984 ◽  
Vol 74 (2) ◽  
pp. 395-415
Author(s):  
D. J. Doornbos

Abstract The determination of radiated seismic energy on the one hand, and of source size and static stress drop on the other, depends in principle on a representation of different parts of the source spectrum. In practice with band-limited data from a sparse network, the required source parameterization is often the same. Spectral models parameterized by the source's central moments of degree zero and two are introduced as an approximation to the general representation of the amplitude spectrum in terms of the central moments of even degree. Phase spectra are not used, apart from polarity. These models are shown to simulate well the principal features of common circular and Haskell type of models, including the corner frequency shift of P waves with respect to S waves, and the relation between rupture velocity and maximum seismic efficiency. Spectral bandwidths and the determination of radiated energy and apparent stress are contrasted to time domain pulse widths and the determination of source size and static stress drop in these models. The consequences of a reduced number of source parameters are examined, in particular for circular models and point source approximations; in these cases, results for radiated energy can be obtained in closed form. The scaling of radiated energy with moment is assumed to be linear for simple sources, but in stochastic models of complex sources the scaling may be between linear and quadratic. A relatively large increase of radiated energy with moment would be accompanied by an underestimate of source size and an overestimate of stress drop. However, the determination of radiated energy may still be correct.



Author(s):  
Xiaohui He ◽  
Hao Liang ◽  
Peizhen Zhang ◽  
Yue Wang

Abstract The South China block has been one of the most seismically quiescent regions in China, and the geometries and activities of the Quaternary faults have remained less studied due to the limited outcrops. Thus, source parameters of small-to-moderate earthquakes are important to help reveal the location, geometry distribution, and mechanical properties of the subsurface faults and thus improve the seismic risk assessment. On 12 October 2019, two earthquakes (the Ms 4.2 foreshock and the Ms 5.2 mainshock) occurred within 2 s and are located in southern South China block, near the junction region of the large-scale northeast-trending fault zones and the less continuous northwest-trending fault zones. We determined the point-source parameters of the two events via P-wave polarity analysis and regional waveform modeling, and the resolved focal mechanisms are significantly different with the minimum 3D rotation angle of 52°. We then resolved the rupture directivity of the two events by analyzing the azimuth variation of the source time duration and found the Ms 4.2 foreshock ruptured toward north-northwest for ∼1.0 km, and the Ms 5.2 mainshock ruptured toward east-southeast (ESE) for ∼1.5 km, implying conjugate strike-slip faulting. The conjugate causative faults have not been mapped on the regional geological map, and we infer that the two faults may be associated with the northwest-trending Bama-Bobai fault zone (the Shiwo section). These active faults are optimally oriented in the present-day stress field (northwest-southeast) and thus may now be potentially accumulating elastic strain to be released in a future large earthquake.



Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 339-354 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch ◽  
T. Nissen-Meyer

Abstract. Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attempted, due to a mismatch between the complex and band-limited data and the (ray-theoretical) modelling methods. Here we present a data processing and modelling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that is it possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modelled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric Earth.



1997 ◽  
Vol 40 (1) ◽  
Author(s):  
G. Drakatos ◽  
G. Karantonis ◽  
G. N. Stavrakakis

The three-dimensional velocity structure of the crust in the Aegean sea and the surrounding regions (34.0º-42.OºN, 19.0ºE-29.0ºE) is investigated by inversion of about 10000 residuals of arrival times of P-wave from local events. The resulting velocity structure shows strong horizontal variations due to the complicated crustal structure and the variations of crustal thickness. The northern part of the region generally shows high velocities. In the inner part of the volcanic arc (Southern Aegean area), relatively low velocities are observed, suggesting a large-scale absorption of seismic energy as confirmed by the low seismicity of the region. A low velocity zone was observed along the subduction zone of the region, up to a depth of 4 km. The existence of such a zone could be due to granitic or other intrusions in the crust during the uplift of the region during Alpidic orogenesis.



1973 ◽  
Vol 63 (2) ◽  
pp. 599-614 ◽  
Author(s):  
M. E. O'Neill ◽  
J. H. Healy

abstract A simple method of estimating source dimensions and stress drops of small earthquakes is presented. The basic measurement is the time from the first break to the first zero crossing on short-period seismograms. Graphs relating these measurements to rise time as a function of Q and instrument response permit an estimate of earthquake source parameters without the calculation of spectra. Tests on data from Rangely, Colorado, and Hollister, California, indicate that the method gives reasonable results.



1999 ◽  
Vol 89 (4) ◽  
pp. 1077-1082 ◽  
Author(s):  
So Gu Kim ◽  
Nadeja Kraeva

Abstract The purpose of this investigation is to determine source parameters such as focal mechanism, seismic moment, moment magnitude, and source depth from recent small earthquakes in the Korcan Peninsula using broadband records of three-component single station. It is very important and worthwhile to use a three-component single station in Korea because for most Korean earthquakes it is not possible to read enough first motions of P-wave arrivals because of the poor coverage of the seismic network and the small size (ML 5.0 or less) of the events. Furthermore the recent installation of the very broadband seismic stations in Korea and use of a 3D tomography technique can enhance moment tensor inversion to determine the source parameters of small earthquakes (ML 5.0 or less) that occur at near-regional distances (Δ ≤ 500 km). The focal solution for the Youngwol earthquake of 13 December 1996 is found to be a right-lateral strike slip event with a NE strike, and the Kyongju earthquake of 25 June 1997 is found to be an oblique reverse fault with a slight component of left-lateral slip in the SE direction.



Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 365-373 ◽  
Author(s):  
Anton W. Kepic ◽  
Michael Maxwell ◽  
R. Don Russell

An underground test of a seismoelectric prospecting method for massive sulfides was performed at the Mobrun Mine (Rouyn‐Noranda, Quebec) in June 1991. The method is based upon the conversion of seismic energy to high‐frequency pulses of electromagnetic radiation by sulfide minerals. The delay between shot detonation and detection of the electromagnetic radiation gives a one‐way traveltime for the acoustic wave to reach the zone of seismoelectric conversion, which when combined with P‐wave velocity allows the shot‐to‐ore zone distance to be calculated. A 0.22-kg explosive charge located within 50 m of the orebody provided the seismic excitation, and the resulting electromagnetic emissions were received by electric dipole and induction‐coil antennas. First‐arrival information from a 35‐shot survey above an orebody, the 1100 lens, provides firm evidence that short duration pulses of electromagnetic radiation are produced by the passage of acoustic waves through the orebody. The survey also demonstrated that seismoelectric conversions could be induced at shot‐to‐orebody distances of 50 m and detected at distances of up to 150 m from the orebody. Areas of seismoelectric conversion are highlighted in sections produced by plotting the position of seismic wavefronts during signal reception. The sections show anomalies that correlate with the known structure and location of the orebody and demonstrate the potential of using this seismoelectric phenomenon as an exploration tool.



2002 ◽  
Vol 42 (1) ◽  
pp. 627
Author(s):  
R.G. Williams ◽  
G. Roberts ◽  
K. Hawkins

Seismic energy that has been mode converted from pwave to s-wave in the sub-surface may be recorded by multi-component surveys to obtain information about the elastic properties of the earth. Since the energy converted to s-wave is missing from the p-wave an alternative to recording OBC multi-component data is to examine p-wave data for the missing energy. Since pwave velocities are generally faster than s-wave velocities, then for a given reflection point the converted s-wave signal reaches the surface at a shorter offset than the equivalent p-wave information. Thus, it is necessary to record longer offsets for p-wave data than for multicomponent data in order to measure the same information.A non-linear, wide-angle (including post critical) AVO inversion has been developed that allows relative changes in p-wave velocities, s-wave velocities and density to be extracted from long offset p-wave data. To extract amplitudes at long offsets for this inversion it is necessary to image the data correctly, including correcting for higher order moveout and possibly anisotropy if it is present.The higher order moveout may itself be inverted to yield additional information about the anisotropy of the sub-surface.



1994 ◽  
Vol 34 (1) ◽  
pp. 189
Author(s):  
T. L. Burnett

As economics of the oil and gas industry become more restrictive, the need for new means of improving exploration risks and reducing expenses is becoming more acute. Partnerships between industry and academia are making significant improvements in four general areas: Seismic acquisition, reservoir characterisation, quantitative structural modelling, and geochemical inversion.In marine seismic acquisition the vertical cable concept utilises hydrophones suspended at fixed locations vertically within the water column by buoys. There are numerous advantages of vertical cable technology over conventional 3-D seismic acquisition. In a related methodology, 'Borehole Seismic', seismic energy is passed between wells and valuable information on reservoir geometry, porosity, lithology, and oil saturation is extracted from the P-wave and S-wave data.In association with seismic methods of determining the external geometry and the internal properties of a reservoir, 3-dimensional sedimentation-simulation models, based on physical, hydrologic, erosional and transport processes, are being utilised for stratigraphic analysis. In addition, powerful, 1-D, coupled reaction-transport models are being used to simulate diagenesis processes in reservoir rocks.At the regional scale, the bridging of quantitative structural concepts with seismic interpretation has led to breakthroughs in structural analysis, particularly in complex terrains. Such analyses are becoming more accurate and cost effective when tied to highly advanced, remote-sensing, multi-spectral data acquisition and image processing technology. Emerging technology in petroleum geochemistry, enables geoscientists to infer the character, age, maturity, identity and location of source rocks from crude oil characteristics ('Geochemical Inversion') and to better estimate hydrocarbon-supply volumetrics. This can be invaluable in understanding petroleum systems and in reducing exploration risks and associated expenses.



Sign in / Sign up

Export Citation Format

Share Document