scholarly journals Relevance of Blood Vessel Networks in Blast-Induced Traumatic Brain Injury

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Hua ◽  
Shengmao Lin ◽  
Linxia Gu

Cerebral vasculature is a complex network that circulates blood through the brain. However, the role of this networking effect in brain dynamics has seldom been inspected. This work is to study the effects of blood vessel networks on dynamic responses of the brain under blast loading. Voronoi tessellations were implemented to represent the network of blood vessels in the brain. The brain dynamics in terms of maximum principal strain (MPS), shear strain (SS), and intracranial pressure (ICP) were monitored and compared. Results show that blood vessel networks significantly affected brain responses. The increased MPS and SS were observed within the brain embedded with vessel networks, which did not exist in the case without blood vessel networks. It is interesting to observe that the alternation of the ICP response was minimal. Moreover, the vessel diameter and density also affected brain dynamics in both MPS and SS measures. This work sheds light on the role of cerebral vasculature in blast-induced traumatic brain injury.

2021 ◽  
Vol 28 ◽  
Author(s):  
Lucas Alexandre Santos Marzano ◽  
Fabyolla Lúcia Macedo de Castro ◽  
Caroline Amaral Machado ◽  
João Luís Vieira Monteiro de Barros ◽  
Thiago Macedo e Cordeiro ◽  
...  

: Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI’s long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.


2015 ◽  
Vol 148 (4) ◽  
pp. S-384
Author(s):  
Elise L. Ma ◽  
Allen Smith ◽  
Neemesh Desai ◽  
Alan Faden ◽  
Terez Shea-Donohue

2016 ◽  
Vol 07 (S 01) ◽  
pp. S076-S079 ◽  
Author(s):  
Ashok Munivenkatappa ◽  
Amit Agrawal

ABSTRACTDegree of recovery after traumatic brain injury is highly variable that lasts for many weeks to months. The evidence of brain structures involved in recovery mechanisms is limited. This review highlights evidence of the brain structure particularly thalamus in neuroplasticity mechanism. Thalamus with its complex global networking has potential role in refining the cortical and other brain structures. Thalamic nuclei activation both naturally or by neurorehabilitation in injured brain can enhance and facilitate the improvement of posttraumatic symptoms. This review provides evidence from literature that thalamus plays a key role in recovery mechanism after injury. The study also emphasize that thalamus should be specifically targeted in neurorehabilitation following brain injury.


2011 ◽  
Vol 89 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Mohammad Khaksari ◽  
Zahra Soltani ◽  
Nader Shahrokhi ◽  
Gholamreza Moshtaghi ◽  
Gholamreza Asadikaram

Cytokines play an important role in the pathophysiology of traumatic brain injury (TBI). This study was designed to determine the effects of administering progesterone (P) and estrogen (E), alone and in combination, on brain water content, blood–brain barrier (BBB) disturbance, and brain level of cytokines following diffuse TBI. Ovariectomized rats were divided into 9 groups, treated with vehicle, E1, E2, P1, P2, E1+P1, E1+P2, E2+P1, and E2+P2. Levels of BBB disruption (5 h), cytokines, and water content (24 h) were evaluated after TBI induced by the Marmarou method. Physiological (E1 and P1) and pharmacological (E2 and P2) doses of estrogen and progesterone were administered 30 min after TBI. Water content in the E1+P2-treated group was higher than in the E1-treated group. The inhibitory effect of E2 on water content was reduced by adding progesterone. The inhibitory effect of E1 and E2 on Evans blue content was reduced by treatment with E1+P1 and E2+P2, respectively. The brain level of IL-1β was reduced in E1 and E2, after TBI. In the E2+P2-treated group, this level was higher than in the E2-treated group. The brain level of TGF-β was also elevated by the administration of progesterone and estrogen alone, and reduced when the hormones were administered in combination. In conclusion, a combined administration of progesterone and estrogen inhibited the decreasing effects of administration of progesterone and estrogen alone on water content and BBB disruption that mediated to change the proinflammatory cytokines.


2021 ◽  
Author(s):  
Priya Badyal ◽  
Jaspreet Kaur ◽  
Anurag Kuhad

The pathogenesis of edema after traumatic brain injury is complex including the destruction of micro-vessels and alterations in microcirculation around the primary injury and leakage of plasma constituents into the tissue, due to permeability changes of the vessel walls. Many functional molecules like histamine, serotonin, arachidonic acid, prostaglandins and thromboxane have been shown to induce blood–brain barrier (BBB) disruption or cell swelling. It is believed that released 5-HT binds to 5-HT2 receptors stimulating cAMP and prostaglandins in vessels that cause more vesicular transport in endothelial cells leading to serum component’s extravasation. The additional amount of serotonin into the tissue due to injury maintains the state of increased vascular permeability that ultimately causes edema. Serotonin is clearly involved in early cytotoxic edema after TBI. Reduction of serotonin in the nervous tissue reduces swelling and the milder cell changes in the brain or spinal cord of traumatized rats. Inhibition of serotonin synthesis before closed head injury (CHI) in rat models or administration of serotonin antiserum after injury attenuates BBB disruption and brain edema volume swelling, and brain pathology. Maintaining low serotonin levels immediately after injury may show neuroprotection and combat various secondary outcomes that occur after traumatic brain injury.


Author(s):  
M. V. Nikiforov ◽  
A. A. Korolev

Relevance. Patients with prolonged impaired consciousness due to traumatic brain injury are the most difficult category of patients in inpatient medical rehabilitation units. Despite the experience gained in managing this complex category of patients, the problem of nutrition status and trophological insufficiency, as well as practical issues regarding the organization of optimal nutrition at this stage of medical rehabilitation remain unresolved.Intention. To study the role of nutritional support for patients with long-term impaired consciousness on the basis of a clinical and epidemiological analysis of severe traumatic brain injury.Methodology. The data of an epidemiological analysis of traumatic brain injuries and features of ongoing nutritional support in patients with long-term impaired consciousness are presented, based on a study of domestic and foreign publications from 2005 to 2019.Results and Discussion. Timely and adequate nutritional support optimizes the structural-functional and metabolic systems of the body, adaptive reserves interfere with rapidly progressive depletion and chronic catabolic processes, contribute to positive changes in the functional state of the brain, reduce infectious complications, and increase the effectiveness of rehabilitation measures and the rate of recovery of consciousness.Conclusion. The analysis revealed the ambiguity of the interpreted data on clinical recommendations and approaches to the use of nutritional support in patients with long-term impaired consciousness due to traumatic brain injury. Considering the fact that in most cases such patients need continuous long-term comprehensive rehabilitation measures, accompanied by significant energy costs of the body, an essential component of the rehabilitation process, in our opinion, is the inclusion of adequate nutritional support that prevents fast-progressing exhaustion and chronic catabolic processes. In this regard, such an urgent task is to optimize the algorithms of nutritional support in patients with long-term impaired consciousness after a traumatic brain injury, the solution of which will improve the functional state of the brain and, therefore, the rehabilitation prognosis and quality of their life.


2018 ◽  
Vol 14 (5) ◽  
pp. 85-95 ◽  
Author(s):  
A. I. Baranich ◽  
A. A. Sychev ◽  
I. А. Savin ◽  
A. A. Polupan ◽  
A. V. Oshorov ◽  
...  

Acute isolated traumatic brain injury (TBI) is frequently associated with occurrence of hemostasis disorders, which may be accompanied with hemorrhagic and ischemic events in the brain matter, hence, normal functioning of the blood coagulation system is critical. Understanding of the pathophysiological mechanisms of this phenomenon might help adequate prophylaxis of secondary brain damage. Earlier, development of disseminated intravascular coagulation syndrome (DIC) has been generally considered as a mechanism of coagulation disorders during TBI. However, over the recent decades, new data emerged concerning the key role of tissue factor, systemic inflammation response, thrombocytopathy, protein C effect in the occurrence of this coagulopathy. This overview of literature is aimed at providing the new data on specific pathophysiological mechanisms underlying coagulopathy following TBI.


Author(s):  
E. David Bell ◽  
Kenneth L. Monson

Cerebral blood vessels are critical in maintaining the health and function of the brain, but their function can be disrupted by traumatic brain injury (TBI), which commonly includes damage to these vessels [1]. However, even in cases where there is not apparent mechanical damage to the cerebral vasculature, TBI can induce physiological disruptions that can lead to breakdown of the blood brain barrier or loss of cerebral autoregulation.


Author(s):  
X. Gary Tan ◽  
Amit Bagchi

Current understanding of blast wave transmission and mechanism of primary traumatic brain injury (TBI) and the role of helmet is incomplete thus limiting the development of protection and therapeutic measures. Combat helmets are usually designed based on costly and time consuming laboratory tests, firing range, and forensic data. Until now advanced medical imaging and computational modeling tools have not been adequately utilized in the design and optimization of combat helmets. The goal of this work is to develop high fidelity computational tools, representative virtual human head and combat helmet models that could help in the design of next generation helmets with improved blast and ballistic protection. We explore different helmet configurations to investigate blast induced brain biomechanics and understand the protection role of helmet by utilizing an integrated experimental and computational method. By employing the coupled Eulerian-Lagrangian fluid structure interaction (FSI) approach we solved the dynamic problem of helmet and head under the blast exposure. Experimental shock tube tests of the head surrogate provide benchmark quality data and were used for the validation of computational models. The full-scale computational NRL head-neck model with a combat helmet provides physical quantities such as acceleration, pressure, strain, and energy to blast loads thus provides a more complete understanding of the conditions that may contribute to TBI. This paper discusses possible pathways of blast energy transmission to the brain and the effectiveness of helmet systems at blast loads. The existing high-fidelity image-based finite element (FE) head model was applied to investigate the influence of helmet configuration, suspension pads, and shell material stiffness. The two-phase flow model was developed to simulate the helium-air shock wave interaction with the helmeted head in the shock tube. The main contribution was the elucidation of blast wave brain injury pathways, including wave focusing in ocular cavities and the back of head under the helmet, the effect of neck, and the frequency spectrum entering the brain through the helmet and head. The suspension material was seen to significantly affect the ICP results and energy transmission. These findings can be used to design next generation helmets including helmet shape, suspension system, and eye protection.


Sign in / Sign up

Export Citation Format

Share Document