scholarly journals Modern Treatments and Stem Cell Therapies for Perianal Crohn’s Fistulas

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Alghalya Khalid Sulaiman Al-Maawali ◽  
Phuong Nguyen ◽  
P. Terry Phang

Crohn’s disease (CD) is a complex disorder with important incidence in North America. Perianal fistulas occur in about 20% of patients with CD and are almost always classified as complex fistulas. Conventional treatment options have shown different success rates, yet there are data indicating that these approaches cannot achieve total cure and may not improve quality of life of these patients. Fibrin glue, fistula plug, topical tacrolimus, local injection of infliximab, and use of hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) are newly suggested therapies with variable success rates. Here, we aim to review these novel therapies for the treatment of complex fistulizing CD. Although initial results are promising, randomized studies are needed to prove efficacy of these approaches in curing fistulizing perianal CD.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashton C. Trotman-Grant ◽  
Mahmood Mohtashami ◽  
Joshua De Sousa Casal ◽  
Elisa C. Martinez ◽  
Dylan Lee ◽  
...  

AbstractT cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-μbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αβ T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-μbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


1995 ◽  
Vol 15 (3) ◽  
pp. 70-72 ◽  
Author(s):  
LT Swanson

The congenital heart defect of HLHS is nearly uniformly fatal without intervention. As surgeons gain experience with the techniques the success rates are improving; more infants with HLHS are being offered hope for survival and quality of life. The critical nature of this diagnosis, the relatively new treatment options, and uncertainty of the surgical outcome impose tremendous stress on the parents. Choice of treatment is difficult and should be made in collaboration with the attending physician. Although the first year of my son's life was difficult, the past 5 years have been wonderful. He continues to thrive and enjoy most of the activities other 6-year-olds enjoy. In retrospect, palliative surgery was a good option for him. As both his mother and a cardiac nurse, I recognize that he may once again require surgical intervention, but I am encouraged that medical and surgical advances are being made for children with HLHS.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Justyna Sakowska ◽  
Paulina Glasner ◽  
Maciej Zieliński ◽  
Piotr Trzonkowski ◽  
Leopold Glasner

Cornea is one of the most commonly transplanted tissues worldwide. However, it is usually omitted in the field of transplantology. Transplantation of the cornea is performed to treat many ocular diseases. It restores eyesight significantly improving the quality of life. Advancements in banking of explanted corneas and progressive surgical techniques increased availability and outcomes of transplantation. Despite the vast growth in the field of transplantation laboratory testing, standards for corneal transplantation still do not include HLA typing or alloantibody detection. This standard practice is based on immune privilege dogma that accounts for high success rates of corneal transplantation. However, the increasing need for retransplantation in high-risk patients with markedly higher risk of rejection causes ophthalmology transplantation centers to reevaluate their standard algorithms. In this review we discuss immune privilege mechanisms influencing the allograft acceptance and factors disrupting the natural immunosuppressive environment of the eye. Current developments in testing and immunosuppressive treatments (including cell therapies), when applied in corneal transplantation, may give very good results, decrease the possibility of rejection, and reduce the need for retransplantation, which is fairly frequent nowadays.


2019 ◽  
Vol 217 (3) ◽  
Author(s):  
Yoon-A Kang ◽  
Eric M. Pietras ◽  
Emmanuelle Passegué

Targeting commonly altered mechanisms in leukemia can provide additional treatment options. Here, we show that an inducible pathway of myeloid regeneration involving the remodeling of the multipotent progenitor (MPP) compartment downstream of hematopoietic stem cells (HSCs) is commonly hijacked in myeloid malignancies. We establish that differential regulation of Notch and Wnt signaling transiently triggers myeloid regeneration from HSCs in response to stress, and that constitutive low Notch and high Wnt activity in leukemic stem cells (LSCs) maintains this pathway activated in malignancies. We also identify compensatory crosstalk mechanisms between Notch and Wnt signaling that prevent damaging HSC function, MPP production, and blood output in conditions of high Notch and low Wnt activity. Finally, we demonstrate that restoring Notch and Wnt deregulated activity in LSCs attenuates disease progression. Our results uncover a mechanism that controls myeloid regeneration and early lineage decisions in HSCs and could be targeted in LSCs to normalize leukemic myeloid cell production.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Shatha Farhan ◽  
Edward Peres ◽  
Nalini Janakiraman

Allogeneic hematopoietic stem cell transplantation (SCT) is often the only curative option for many patients with malignant and benign hematological stem cell disorders. However, some issues are still of concern regarding finding a donor like shrinking family sizes in many societies, underrepresentation of the ethnic minorities in the registries, genetic variability for some races, and significant delays in obtaining stem cells after starting the search. So there is a considerable need to develop alternate donor stem cell sources. The rapid and near universal availability of the haploidentical donor is an advantage of the haploidentical SCT and an opportunity that is being explored currently in many centers especially using T cell replete graft and posttransplant cyclophosphamide. This is probably because it does not require expertise in graft manipulation and because of the lower costs. However, there are still lots of unanswered questions, like the effect of use of bone marrow versus peripheral blood as the source of stem cells on graft-versus-host disease, graft versus tumor, overall survival, immune reconstitution, and quality of life. Here we review the available publications on bone marrow and peripheral blood experience in the haploidentical SCT setting.


2021 ◽  
Author(s):  
Josefina Piñón Hofbauer ◽  
Verena Wally ◽  
Christina Guttmann-Gruber ◽  
Iris Gratz ◽  
Ulrich Koller

Although rare genodermatoses such as Epidermolysis bullosa have received more attention over the last years, no approved treatment options targeting causal mutations are currently available. Still, such diseases can be devastating, in some cases even associated with life-threatening secondary manifestations. Therefore, developing treatments that target disease-associated complications along with causal therapies remains the focus of current research efforts, in order to increase patient’s quality of life and potentially their life expectancy. Epidermolysis bullosa is a genodermatosis that is caused by mutations in either one of 16 genes, predominantly encoding structural components of the skin and mucosal epithelia that are crucial to give these barrier organs physical and mechanical resilience to stress. The genetic heterogeneity of the disease is recapitulated in the high variability of phenotypic expressivity observed, ranging from minor and localized blistering to generalized erosions and wound chronification, rendering certain subtypes a systemic disease that is complicated by a plethora of secondary manifestations. During the last decades, several studies have focused on developing treatments for EB patients and significant progress has been made, as reflected by numerous publications, patents, and registered trials available. Overall, strategies range from causal to symptom-relieving approaches, and include gene, RNA and cell therapies, as well as drug developments based on biologics and small molecules. In this chapter, we highlight the most recent and promising approaches that are currently being investigated in order to provide effective treatments for patients with epidermolysis bullosa in the future.


Hematology ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 708-715 ◽  
Author(s):  
Andrew C. Dietz ◽  
Alan S. Wayne

Abstract Relapse of cancer remains one of the primary causes of treatment failure and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). A multitude of approaches have been used in the management of posttransplant relapse. This review focuses on recent data with cellular therapies designed to treat or prevent posttransplant relapse of hematologic malignancies, although many of these therapeutic approaches also have applications to solid tumors and in the nontransplant setting. Currently available cell therapies include second transplant, natural killer cells, monocyte-derived dendritic cell vaccines, and lymphocytes via donor lymphocyte infusion, antigen-primed cytotoxic T lymphocytes, cytokine-induced killer cells, marrow-infiltrating lymphocytes, and chimeric antigen receptor T cells. These treatment options offer the prospect for improved relapse-free survival after HSCT.


Sign in / Sign up

Export Citation Format

Share Document