scholarly journals Prediction of Load-Carrying Capacity in Steel Shear Wall with Opening Using Artificial Neural Network

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
E. Khalilzadeh Vahidi ◽  
M. M. Roshani

The effects of different parameters on steel plate shear wall (SPSW) are investigated. The studied parameters are thickness of plate, location of the opening, thickness of diagonal stiffeners, and thickness of circular stiffener. Load-carrying capacity of the SPSW is studied under static load using nonlinear geometrical and material analysis in ABAQUS and the obtained simulation results are verified. An artificial neural network (ANN) is proposed to model the effects of these parameters. According to the results the circular stiffener has more effect compared with the diagonal stiffeners. However, the thickness of the plate has the most significant effect on the SPSW behavior. The results show that the best place for the opening location is the center of SPSW. Multilayer perceptron (MLP) neural network was used to predict the maximum load in SPSW with opening. The predicted maximum load values using the proposed MLP model were compared with the simulated validated data. The obtained results show that the proposed ANN model has achieved good agreement with the validated simulated data, with correlation coefficient of more than 0.9975. Therefore, the proposed model is useful, reliable, fast, and cheap tools to predict the maximum load in SPSW.

2013 ◽  
Vol 315 ◽  
pp. 221-225 ◽  
Author(s):  
Ahmad F.A. Rahman ◽  
Hazlina Selamat ◽  
Fatimah S. Ismail

In this paper, a new Artificial Neural Network (ANN) model that relates human comfort and electrical power consumption of a building with temperature, illumination and carbon dioxide (CO2) level inside the building is developed. The model has been developed using samples of simulated data representing the indoor environment variables. Results have shown that neural network with 14 hidden layer neurons produces outputs that is closest to the actual system outputs.


Robotica ◽  
2010 ◽  
Vol 28 (7) ◽  
pp. 1083-1093 ◽  
Author(s):  
M. H. Korayem ◽  
A. Alamdari ◽  
R. Haghighi ◽  
A. H. Korayem

SUMMARYIn this paper, the combination of neural network (NN), proportional derivative (PD), and robust controller are used for determining the maximum load-carrying capacity (MLCC) of articulated robots, subject to both actuator and end-effector deflection constraints. The proposed technique is then applied to articulated robots, and MLCC is obtained for a given trajectory. In the practical simulations, it's impossible to determine the parameters of robot model exactly, so the trajectory tracking performance of the proportional integral derivative (PID) and computed torque methods significantly decrease. The PD control of robot has major problem, it cannot guarantee zero steady state error. For this reason, the NN controller with PD and robust controller are used. The multilayer neural network is also used to compensate gravity and friction effects. By using Lyapunov Direct Method it is shown that the stability of closed loop system would be guaranteed, if the weights of multilayer had certain learning rules. Standard back propagation algorithm is used as a learning algorithm to update the connection weights of the NN controller. The simulation results of the proposed adaptive robust neural network (ARNN) controller are compred with sliding mode and feedback linearization methods for flexible joint robot, and compared with open loop controller for 3D industrial robot. The obtained results assured the robustness and improvement in MLCC in the presence of uncertainties in dynamic model of the robot arm and external disturbances. In fact, adaptive robust NN controller suppresses disturbances accurately and achieves very small errors between commanded and actual trajectories.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Akbar Biglarian ◽  
Enayatollah Bakhshi ◽  
Ahmad Reza Baghestani ◽  
Mahmood Reza Gohari ◽  
Mehdi Rahgozar ◽  
...  

Survival analysis methods deal with a type of data, which is waiting time till occurrence of an event. One common method to analyze this sort of data is Cox regression. Sometimes, the underlying assumptions of the model are not true, such as nonproportionality for the Cox model. In model building, choosing an appropriate model depends on complexity and the characteristics of the data that effect the appropriateness of the model. One strategy, which is used nowadays frequently, is artificial neural network (ANN) model which needs a minimal assumption. This study aimed to compare predictions of the ANN and Cox models by simulated data sets, which the average censoring rate were considered 20% to 80% in both simple and complex model. All simulations and comparisons were performed by R 2.14.1.


Author(s):  
C. P. Obite ◽  
N. P. Olewuezi ◽  
G. U. Ugwuanyim ◽  
D. C. Bartholomew

In this study we compared the performance of Ordinary Least Squares Regression (OLSR) and the Artificial Neural Network (ANN) in the presence of multicollinearity using two datasets – a real life insurance data and a simulated data – to know which of the methods, models a highly correlated dataset better using the Root Mean Square Error (RMSE) as the performance measure. The ANN performed better than the OLSR model for all the different ANN models except the models with nine and ten nodes in the hidden layer for the real life data. The network with four hidden nodes was the best model. For the simulated data, the ANN model with two hidden nodes gave us the least RMSE when compared to the OLSR model and the other ANN models in the testing set. The network with two hidden nodes modelled the data very well. In the presence of multicollinearity, ANN model achieves a better fit and forecast than the OLSR.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Nam-Gyu Lim ◽  
Jae-Yeol Kim ◽  
Seongjun Lee

Battery applications, such as electric vehicles, electric propulsion ships, and energy storage systems, are developing rapidly, and battery management issues are gaining attention. In this application field, a battery system with a high capacity and high power in which numerous battery cells are connected in series and parallel is used. Therefore, research on a battery management system (BMS) to which various algorithms are applied for efficient use and safe operation of batteries is being conducted. In general, maintenance/replacement of multi-series/multiple parallel battery systems is only possible when there is no load current, or the entire system is shut down. However, if the circulating current generated by the voltage difference between the newly added battery and the existing battery pack is less than the allowable current of the system, the new battery can be connected while the system is running, which is called hot swapping. The circulating current generated during the hot-swap operation is determined by the battery’s state of charge (SOC), the parallel configuration of the battery system, temperature, aging, operating point, and differences in the load current. Therefore, since there is a limit to formulating a circulating current that changes in size according to these various conditions, this paper presents a circulating current estimation method, using an artificial neural network (ANN). The ANN model for estimating the hot-swap circulating current is designed for a 1S4P lithium battery pack system, consisting of one series and four parallel cells. The circulating current of the ANN model proposed in this paper is experimentally verified to be able to estimate the actual value within a 6% error range.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Sign in / Sign up

Export Citation Format

Share Document