scholarly journals Development of Intermediate Cooling Technology and Its Control for Two-Stand Plate Rolling

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Fei Zhang ◽  
Wei Yu ◽  
Tao Liu

In a plate rolling production line, thermomechanically controlled processing is critical for plate quality. In this paper, a set of intermediate cooling equipment of a two-stand plate mill with super density nozzles, medium pressure, and small flow is developed. Based on a simplified dynamic model, a cooling control scheme with combined feedforward, feedback, and adaptive algorithms is put forward. The new controlled rolling process and the highly efficient control system improve the controlled rolling efficiency by an average of 17.66%. The proposed intermediate cooling system can also effectively inhibit the growth of austenite grain, improve the impact toughness and yield strength of Q345B steel plate, reduce the formation of secondary oxide scale on the plate surface and the chromatic aberration of the plate surface, and greatly improve the surface quality of the steel plate.

2010 ◽  
Vol 148-149 ◽  
pp. 359-362
Author(s):  
Wen Feng Huo ◽  
Xian Lei Hu ◽  
Bing Xing Wang ◽  
Xiang Hua Liu

Air cooling may decrease rolling efficiency in controlled rolling for needing long holding time to obtain the correct rolling temperature because of small cooling rate. The intermediate cooling can increate the cooling rate, and improve rolling efficiency. Experiment was carried out to research the effect of intermediate cooling on rolling efficiency. The influence of different cooling mode on the temperature distribution and the temperature profile characteristics of different cooling strategy are analyzed with FEM. It shows that intermediate cooling can decrease the holding time effectively, and improve rolling efficiency; the temperature homogeneity in thickness direction can be improved by opening the header one after another and cooling the plate by oscillating cooling.


2013 ◽  
Vol 718-720 ◽  
pp. 725-732
Author(s):  
Kuang I Chang ◽  
Weber Yi Yuan Lin ◽  
Bor Nian Chuang ◽  
Kuang Fu Huang

This paper mainly describes application of non-contact laser thickness gauge in steel plate rolling process, including workstation site thickness measurement, data collection, information analysis and integration with ERP system, as well as problems may arise during applications and sustainable development in the future. Through the system development to realize traditional steel plate rolling industry information planning, paperless operations, increase work efficiency, enhance product quality and zero defective products. Integrated design of steel plate thickness measurement and tachometer, to understand the pros and cons of output products right after steel plate rolling, and do product level classification immediately to assist enterprises to save manpower, time and loss cost of export defective products to the market, and eventually increase products competition and profits.


2021 ◽  
Vol 11 (12) ◽  
pp. 5526
Author(s):  
Hyun-Hee Kim ◽  
Sung-Jin Kim ◽  
Sung-Min Yoon ◽  
Yong-Joon Choi ◽  
Min-Cheol Lee

In a hot rolling process, excessive friction between rollers and steel plates may lead to the formation of scratches on the steel plate. To reduce scratch formation in the finishing mill of the hot rolling process, two techniques are proposed in this work: flying touch and velocity synchronization. The proposed flying touch method can reduce the impact of the generated force when the upper roller collides with the steel plate. In addition, the proposed velocity synchronization method can decrease the frictional force resulting from the velocity difference between the rollers and steel plate. The effectiveness of the proposed methods was demonstrated through simulations and experiments using a 1/40 downscaled hot rolling simulator. The simulations and experimental results demonstrate that the proposed methods can reduce the magnitudes of friction and impact forces that lead to scratch formation on the steel plates in the hot rolling process.


2018 ◽  
Vol 941 ◽  
pp. 170-175
Author(s):  
Ville Ritola ◽  
Juha Pyykkönen ◽  
David Martin ◽  
Pasi Suikkanen ◽  
Magnus Carlsson

Hot rolled structural plate steels with yield strength of 700 MPa are an excellent choice for a variety of demanding applications that require excellent toughness and welding properties. SSAB has developed novel hot-rolled plate steels that are produced using precision controlled rolling and an innovative cooling and tempering strategy that ensures invariable mechanical properties in the width and the length directions of the plate. The recently developed steel meets or exceeds the requirements of EN 10025-6 for the S690QL grade. The minimum yield strength (ReH) is between 630 MPa and 690 MPa depending on plate the thickness, and the interval of tensile strength is 760 - 940 MPa, while the minimum elongation at fracture is 14 %. Further, an impact energy of 69 J at-40 °C on transverse V-notch specimen is guaranteed. The novel grades represent superior bendability and surface quality, weldability with excellent HAZ strength and toughness with very low CET and CEV values, exceptional consistency of properties within a plate guaranteed by close tolerances. In addition to the excellent formability, the novel hot rolled steels exhibit greatly improved toughness properties which provides for good resistance to fracture. These outstanding properties are achieved through carefully controlled manufacturing processes. In the present study, a sophisticated recrystallization based hot rolling process optimization method is presented. With the final aim to improve the impact toughness of the novel steel, recrystallization analyses and modelling of austenite grain size development through the rolling pass schedule is performed.


2012 ◽  
Vol 715-716 ◽  
pp. 529-541
Author(s):  
R. Doell ◽  
Joseph Lee ◽  
A. Harvey ◽  
M. Steeper

Modern steel plate manufacture relies on the manipulation of recrystallisation and grain growth in order to obtain maximised and precise mechanical properties from low-alloyed feedstock. The models that describe this metallurgical process nowadays inform the design of the plant itself. They are also capable of application to the on-line control of rolling, as well as to several of the ancillary mill operations.


2007 ◽  
Vol 26-28 ◽  
pp. 55-60 ◽  
Author(s):  
Nam Hyun Kang ◽  
Inae Park ◽  
Jong Won Jin ◽  
Sang Ho Byun ◽  
Young Jung Lee ◽  
...  

The demand to replace Fe-V steel with Fe-Nb steel is evolving because of high costs of raw vanadium material. For the mass production of Fe-Nb steel, the most critical barrier is a poor impact toughness comparing with that of Fe-V steel. This study covers a microstructural investigation for ferrite grain size to explain the strength and toughness results as a function of V and Nb contents. The steel samples were made of three different compositions, i.e., Fe-V steel (Fe-0.05V-0.001Nb), Fe-V-Nb steel (Fe-0.014V-0.03Nb), and Fe-Nb steel (Fe-0.003V-0.033Nb). Rolling temperature to initiate was 1150°C for the all experiments. However, rolling temperature to finish was set differently for two conditions; 950°C and 860°C. The rolling to 860°C decreased the grain size for the ferrite phase and increased the impact toughness rather than the case of 950°C. The Fe-V-Nb steel exhibited similar value of the impact toughness with that for the Fe-V steel because of the low rolling temperature to finish, i.e., 860°C. The whole replace of V with Nb decreased the impact toughness significantly, however some extent of V content remained with Nb content showed the comparable toughness to the Fe-V steel by optimizing the controlled rolling process.


2018 ◽  
Vol 175 ◽  
pp. 01025
Author(s):  
Lu Shiping ◽  
Li qun ◽  
Wang Zhiyong ◽  
Gu Linhao ◽  
Zhang Xuanming

In this paper, the advantages of the longitudinal profiled(LP) steel plate is described, and the characteristics of LP plate rolling process is introduced. In contrast to the ordinary steel plate, The change rule of the bite angle and other parameters is put forward from the rolling principle. On this basis, the rolling plan is formulated. The finished condition of the steel plate is TMCP, and the size of the steel plate is corresponding to the setting value. Test result shows that the performance meets the standard of Q345. This indicates that LP plate has successfully developed in the Shougang thick plate plant.


2014 ◽  
Vol 536-537 ◽  
pp. 1460-1463
Author(s):  
Zhao Wei Dong ◽  
Xiao Hang Wan ◽  
Zhan Ping Huang ◽  
Sheng Yong Liu

In order to increase rolling efficiency and production quality, adopted the finite element method, the rolling force analysis model of 3500mm rolling mill is established in this paper based on the thermal mechanical analysis theory, According to the rolling technology parameters in actual production, the rolling process of plate rolling is systematic studied, which thinks about the thermal stress caused by uneven temperature distribution. The law of technology parameters influencing rolling force is gained, which uses in the optimization of rolling process, improves production efficiency. it has important significance to reduce the energy consumption.


Author(s):  
Marvin Schmidt ◽  
Andreas Schütze ◽  
Stefan Seelecke

Energy saving and environmental protection are topics of growing interest. In the light of these aspects alternative refrigeration principles become increasingly important. Shape memory alloys (SMA), especially NiTi alloys, generate a large amount of latent heat during solid state phase transformations, which can lead to a significant cooling effect in the material. These materials do not only provide the potential for an energy-efficient cooling process, they also minimize the impact on the environment by reducing the need for conventional ozone-depleting refrigerants. Our paper, presenting first results obtained in a project within the DFG Priority Program SPP 1599 “Ferroic Cooling”, focuses on the thermodynamic analysis of a NiTi-based cooling system. We first introduce a suitable cooling process and subsequently illustrate the underlying mechanisms of the process in comparison with the conventional compression refrigeration system. We further introduce a graphical solution to calculate the energy efficiency ratio of the system. This thermodynamic analysis method shows the necessary work input and the heat absorption of the SMA in stress/strain- or temperature/entropy-diagrams, respectively. The results of the calculations underline the high potential of this solid-state cooling methodology.


Sign in / Sign up

Export Citation Format

Share Document