scholarly journals Non-Perfect-Fluid Space-Times in Thermodynamic Equilibrium and Generalized Friedmann Equations

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Konrad Schatz ◽  
Horst-Heino von Borzeszkowski ◽  
Thoralf Chrobok

We determine the energy-momentum tensor of nonperfect fluids in thermodynamic equilibrium and, respectively, near to it. To this end, we derive the constitutive equations for energy density and isotropic and anisotropic pressure as well as for heat-flux from the corresponding propagation equations and by drawing on Einstein’s equations. Following Obukhov on this, we assume the corresponding space-times to be conform-stationary and homogeneous. This procedure provides these quantities in closed form, that is, in terms of the structure constants of the three-dimensional isometry group of homogeneity and, respectively, in terms of the kinematical quantities expansion, rotation, and acceleration. In particular, we find a generalized form of the Friedmann equations. As special cases we recover Friedmann and Gödel models as well as nontilted Bianchi solutions with anisotropic pressure. All of our results are derived without assuming any equations of state or other specific thermodynamic conditions a priori. For the considered models, results in literature are generalized to rotating fluids with dissipative fluxes.

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2272
Author(s):  
Ying-Qiu Gu

By analyzing the energy-momentum tensor and equations of state of ideal gas, scalar, spinor and vector potential in detail, we find that the total mass density of all matter is always positive, and the initial total pressure is negative. Under these conditions, by qualitatively analyzing the global behavior of the dynamical equation of cosmological model, we get the following results: (i) K=1, namely, the global spatial structure of the universe should be a three-dimensional sphere S3; (ii) 0≤Λ<10−24ly−2, the cosmological constant should be zero or an infinitesimal; (iii) a(t)>0, the initial singularity of the universe is unreachable, and the evolution of the universe should be cyclic in time. Since the matter components considered are quite complete and the proof is very elementary and strict, these conclusions are quite reliable in logic and compatible with all observational data. Obviously, these conclusions will be very helpful to correct some popular misconceptions and bring great convenience to further research other problems in cosmology such as the properties of dark matter and dark energy. In addition, the macroscopic Lagrangian of fluid model is derived.


2021 ◽  
pp. 0310057X2097665
Author(s):  
Natasha Abeysekera ◽  
Kirsty A Whitmore ◽  
Ashvini Abeysekera ◽  
George Pang ◽  
Kevin B Laupland

Although a wide range of medical applications for three-dimensional printing technology have been recognised, little has been described about its utility in critical care medicine. The aim of this review was to identify three-dimensional printing applications related to critical care practice. A scoping review of the literature was conducted via a systematic search of three databases. A priori specified themes included airway management, procedural support, and simulation and medical education. The search identified 1544 articles, of which 65 were included. Ranging across many applications, most were published since 2016 in non – critical care discipline-specific journals. Most studies related to the application of three-dimensional printed models of simulation and reported good fidelity; however, several studies reported that the models poorly represented human tissue characteristics. Randomised controlled trials found some models were equivalent to commercial airway-related skills trainers. Several studies relating to the use of three-dimensional printing model simulations for spinal and neuraxial procedures reported a high degree of realism, including ultrasonography applications three-dimensional printing technologies. This scoping review identified several novel applications for three-dimensional printing in critical care medicine. Three-dimensional printing technologies have been under-utilised in critical care and provide opportunities for future research.


2019 ◽  
Vol 136 ◽  
pp. 04080
Author(s):  
Guohui Cao ◽  
Reqiang Liu ◽  
Jing Liu ◽  
Xiang Gao ◽  
Peng Wang

The complex three-dimensional traffic construction often occur when the lower structure cannot bear the construction load and other special cases, indicating the need for temporary reinforcement of the lower structure. In this paper, combined with a project construction example, various temporary reinforcement technologies are adopted to solve the insufficient bearing capacity during understructure construction, which poses a serious danger, to ensure synchronous construction of the understructure and viaduct. Compared with the traditional construction technology, the temporary reinforcement technology proposed in this paper features the advantages of saving project cost and time and has achieved better economic and social benefits.


2005 ◽  
Vol 22 (7) ◽  
pp. 909-929 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Christian D. Kummerow

Abstract A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.


2021 ◽  
Vol 8 (1) ◽  
pp. 205395172110135
Author(s):  
Florian Jaton

This theoretical paper considers the morality of machine learning algorithms and systems in the light of the biases that ground their correctness. It begins by presenting biases not as a priori negative entities but as contingent external referents—often gathered in benchmarked repositories called ground-truth datasets—that define what needs to be learned and allow for performance measures. I then argue that ground-truth datasets and their concomitant practices—that fundamentally involve establishing biases to enable learning procedures—can be described by their respective morality, here defined as the more or less accounted experience of hesitation when faced with what pragmatist philosopher William James called “genuine options”—that is, choices to be made in the heat of the moment that engage different possible futures. I then stress three constitutive dimensions of this pragmatist morality, as far as ground-truthing practices are concerned: (I) the definition of the problem to be solved (problematization), (II) the identification of the data to be collected and set up (databasing), and (III) the qualification of the targets to be learned (labeling). I finally suggest that this three-dimensional conceptual space can be used to map machine learning algorithmic projects in terms of the morality of their respective and constitutive ground-truthing practices. Such techno-moral graphs may, in turn, serve as equipment for greater governance of machine learning algorithms and systems.


1994 ◽  
Vol 49 (6) ◽  
pp. 663-670
Author(s):  
S. Sh. Soulayman ◽  
C. Ch. Marti ◽  
Ch. Ch. Guilpin

Abstract In this paper we apply the method developed in part I for describing the crystalline state of two and three dimensional inert gases. For strong anharmonicity of fourth order, the equations of state of these gases are obtained. This way we calculate the thermoelastic properties of two and three dimensional argon, krypton and xenon using the Lennard-Jones potential. The corrections to the Helmholtz free energy and thermodynamic properties due to quantum effects are considered. The results are compared with the available experimental data.


2021 ◽  
Author(s):  
Sunil Kumar ◽  
Govardhan Reddy

Riboswitches are non-coding RNA that regulate gene expression by folding into specific three-dimensional structures (holo-form) upon binding by their cognate ligand in the presence of Mg2+. Riboswitch functioning is also hypothesized to be under kinetic control requiring large cognate ligand concentrations. We ask the question under thermodynamic conditions, can the riboswitches populate holo-form like structures in the absence of their cognate ligands only in the presence of Mg2+. We addressed this question using thiamine pyrophosphate (TPP) riboswitch as a model system and computer simulations using a coarse-grained model for RNA. The folding free energy surface (FES) shows that with the initial increase in Mg2+ concentration ([Mg2+]), TPP AD undergoes a barrierless collapse in its dimensions. On further increase in [Mg2+], intermediates separated by barriers appear on the FES, and one of the intermediates has a TPP ligand-binding competent structure. We show that site-specific binding of the Mg2+ aids in the formation of tertiary contacts. For [Mg2+] greater than physiological concentration, AD folds into its holo-form like structure even in the absence of the TPP ligand. The folding kinetics shows that it populates an intermediate due to the misalignment of the two arms in the TPP AD, which acts as a kinetic trap leading to larger folding timescales. The predictions of the intermediate structures from the simulations are amenable for experimental verification.


Sign in / Sign up

Export Citation Format

Share Document