scholarly journals The Effect ofLeonurus sibiricusPlant Extracts on Stimulating Repair and Protective Activity against Oxidative DNA Damage in CHO Cells and Content of Phenolic Compounds

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Przemysław Sitarek ◽  
Ewa Skała ◽  
Halina Wysokińska ◽  
Marzena Wielanek ◽  
Janusz Szemraj ◽  
...  

Leonurus sibiricusL. has been used as a traditional and medicinal herb for many years in Asia and Europe. This species is known to have antibacterial, anti-inflammatory, and antioxidant activity and has demonstrated a reduction of intracellular reactive oxygen species. All tested extracts ofL. sibiricusshowed protective and DNA repair stimulating effects in Chinese hamster ovary (CHO) cells exposed to H2O2. Preincubation of the CHO cells with 0.5 mg/mL of plant extracts showed increased expression level of antioxidant genes (SOD2, CAT,andGPx). LC-MS/MS and HPLC analyses revealed the presence of nine phenolic compounds inL. sibiricusplant extracts: catechin, verbascoside, two flavonoids (quercetin and rutin), and five phenolic acids (4-hydroxybenzoic acid, chlorogenic acid, caffeic acid,p-coumaric acid, and ferulic acid). The roots and aerial parts ofin vitro L. sibiricusplant extracts, which had the strongest antioxidant properties, may be responsible for stimulating CHO cells to repair oxidatively induced DNA damage, as well as protecting DNA via enhanced activation of the antioxidant genes (SOD2, CAT,andGPx) regulating intracellular antioxidant capacity. The content of phenolic compounds inin vitroraised plants was greater than the levels found in plants propagated from seeds.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ewa Skała ◽  
Przemysław Sitarek ◽  
Marek Różalski ◽  
Urszula Krajewska ◽  
Janusz Szemraj ◽  
...  

Rhaponticum carthamoideshas a long tradition of use in Siberian folk medicine. The roots and rhizomes of this species are used in various dietary supplements or nutraceutical preparations to increase energy level or eliminate physical weakness. This is the first report to reveal the protective and DNA repair stimulating abilities ofR. carthamoidesroot extracts in Chinese hamster ovary (CHO) cells exposed to an oxidative agent. Both transformed root extract (TR extract) and extract of soil-grown plant roots (NR extract) may be responsible for stimulating CHO cells to repair oxidatively induced DNA damage, but CHO cells stimulated with extract from the transformed roots demonstrated significantly stronger properties than cells treated with the soil-grown plant root extract. These differences in biological activity may be attributed to the differences in the content of phenolic compounds in these root extracts. Preincubation of the CHO cells with TR and NR extracts showed an increase in gene expression and protein levels of catalase (CAT) and superoxide dismutase (SOD2).R. carthamoidesmay possess antioxidant properties that protect CHO cells against oxidative stress.


2021 ◽  
Vol 71 (3) ◽  
pp. 197-206
Author(s):  
Biljana Spremo-Potparević ◽  
Andrea Čabarkapa-Pirković ◽  
Dragana Dekanski ◽  
Dijana Topalović ◽  
Vladan Bajić ◽  
...  

Strawberry fruit Fragaria × ananassa Duchesne, Rosaceae (cv. Romina), rich in anthocyanin polyphenols, has been demonstrated to have favorable effects on health due to its antioxidant properties. The present study investigated the antigenotoxic potential of anthocyanin enriched fraction of Romina strawberry methanolic extract (ACY) against DNA damage on human peripheral blood leukocytes, induced by hydrogen peroxide in vitro. Five concentrations of the ACY extract were used in all experiments (2.5, 5, 10, 15, 20 µg/ml). The results of the alkaline comet assay showed no genotoxic effect of the ACY. After the pre-exposure of the leukocytes to the ACY, and subsequent incubation with H2O2, a decreased number of DNA damaged cells was recorded in all the tested concentrations, compared to controls. In the posttreatment, there was a concentration-dependent DNA damage reduction, while a statistically significant decrease was achieved with 15 and 20 µg/ml concentrations. The results indicate that ACY is efficient in oxidative DNA damage reduction, and it is more potent as a post-applicative than a protective agent.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yuebin Ke ◽  
Xinyun Xu ◽  
Shuang Wu ◽  
Juan Huang ◽  
Yijie Geng ◽  
...  

Objective. To evaluate the potential protective effects of extracts fromFructus rhodomyrti(FR) against oxidative DNA damage using a cellular system and the antioxidant ability onpotassiumbromate- (KBrO3-) mediated oxidative stress in rats.Methods. The effects of FR on DNA damage induced by hydrogen peroxide (H2O2) were evaluated by comet assay in primary spleen lymphocytes cultures. The effects of FR on the activities of SOD, CAT, and GPx and the levels of GSH, hydroperoxides, and 8-OHdG were determined in the plasma and tissues of rats treated with KBrO3.Results. FR was shown to effectively protect against DNA damage induced by H2O2  in vitro, and the maximum protective effect was observed when FR was diluted 20 times. Endogenous antioxidant status, namely, the activities of SOD, CAT, and GPx and the levels of GSH were significantly decreased in the plasma, the liver, and the kidney of the KBrO3-treated rats, while the pretreatment of FR prevented the decreases of these parameters. In addition, the pretreatment of FR was also able to prevent KBrO3-induced increases in the levels of hydroperoxides and 8-OHdG in the plasma, the liver, and the kidney in rats.Conclusions. Our findings suggested that FR might act as a chemopreventive agent with antioxidant properties offering effective protection against oxidative DNA damage in a concentration-dependent mannerin vitroandin vivo.


Author(s):  
Daisy Liu

Snow fungus, Tremella fuciformis, has been demonstrated to have numerous health benefits including purported chemopreventive properties due to free radical-scavenging ability. Protective effects derived from snow fungus polysaccharides are evaluated on Chinese hamster lung fibroblasts (CCL-39) exposed to carcinogen benzo[a]pyrene known to cause free radical formation and oxidative stress to cells. In this experiment, it was hypothesized that the naturally occurring polysaccharides in snow fungus are able to protect against or reduce oxidative stress-induced DNA damage. Polysaccharides were isolated through an alkaline extraction and in-vitro digestion. DNA damage was measured using the single-cell gel electrophoresis comet assay after exposure to benzo[a]pyrene and polysaccharide extract to lung fibroblasts. Results were calculated using the mean and standard deviation data of tail length and area, respectively. Each damaged cell was measured and analyzed through ImageJ Editing Software. The results indicate a promising trend which depict snow fungus polysaccharides yielding lower levels of DNA damage compared to cells exposed to benzo[a]pyrene and compared to the negative control (phosphate buffered saline and Dulbecco’s cell medium). This study suggests polysaccharides from Tremella fuciformis could truly prevent cellular DNA damage by protecting against oxidative stress.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Anita Agnieszka Śliwińska ◽  
Katarzyna Sykłowska-Baranek ◽  
Anita Kośmider ◽  
Sebastian Granica ◽  
Karolina Miszczak ◽  
...  

<p>In this study, an efficient method to enhance phenolic compound production in the in vitro cultured shoots of <em>Polyscias filicifolia</em> was developed. The phenolic compound content in <em>P. filicifolia</em> has not yet been reported. Shoots were treated with methyl jasmonate (JM) or salicylic acid (SA) at doses of 50, 100, or 200 µM. HPLC-UV-VIS and LC-MS techniques were used for the determination of chlorogenic, caffeic, and ferulic acids. The total phenolics and flavonoids were quantified, and the antioxidant capacity of plant extracts was determined using DPPH and ABTS methods. Finally, the cytotoxic activity of <em>P. filicifolia</em> extracts in normal (HaCaT) and cancer (A549) cells was investigated. Further, the effect of the extracts on cisplatin cytotoxicity was assessed.</p><p>The elicitors significantly enhanced phenolic production compared to that in untreated shoots and leaves of intact plants. Chlorogenic acid was the most abundant compound with the highest yield of 5.03 ±0.25 mg/g DW after treatment with 50 µM SA. The total flavonoid and phenolic content was significantly and dose-dependently influenced by JM. The highest antioxidant capacity was noted in extracts derived from shoots grown on media supplemented with 50 µM SA and 200 µM JM; these doses were used for further cytotoxic activity investigations. The extracts from JM or SA treatments reduced cancer cell viability and increased their mortality, whereas the extract from JM treatment exhibited protective effect on normal cells. Moreover, the comparison of cytotoxic properties of plant extracts and cisplatin indicated that plant phenolic compounds in combination with anticancer drugs could reduce the detrimental effect of the latter on human cells.</p>


1998 ◽  
Vol 45 (1) ◽  
pp. 183-190 ◽  
Author(s):  
L Fillion ◽  
A Collins ◽  
S Southon

Epidemiological studies have revealed a strong correlation between high intake of fruit and vegetables and low incidence of certain cancers. Micronutrients present in these foods are thought to decrease free radical attack on DNA and hence protect against mutations that cause cancer, but the fine details of the causal mechanism have still to be elucidated. Whether dietary factors can modulate DNA repair--a crucial element in the avoidance of carcinogenesis--is an intriguing question that has not yet been satisfactorily answered. In order to investigate the effects of beta-carotene on oxidative damage and its repair, volunteers were given a single 45 mg dose and lymphocytes taken before and after the supplement were treated in vitro with H2O2. DNA strand breaks and oxidised pyrimidines were measured at intervals, to monitor the removal of oxidative DNA damage. We found inter-individual variations in response. In cases where the baseline plasma beta-carotene concentration was high, or where supplementation increased the plasma concentration, recovery from oxidative damage (i.e. removal of both oxidised pyrimidines and strand breaks) was relatively rapid. However, what seems to be an enhancement of repair might in fact represent an amelioration of the continuing oxidative stress encountered by the lymphocytes under in vitro culture conditions. We found that culture in a 5% oxygen atmosphere enhanced recovery of lymphocytes from H2O2 damage.


2016 ◽  
Vol 3 (3) ◽  
pp. 479
Author(s):  
Özlem Demirci ◽  
Bircan Çeken Toptancı ◽  
Murat Kızıl

Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1427 ◽  
Author(s):  
Agmal Scherzad ◽  
Till Meyer ◽  
Norbert Kleinsasser ◽  
Stephan Hackenberg

Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival.


1995 ◽  
Vol 16 (3) ◽  
pp. 507-512 ◽  
Author(s):  
P.A.E.L. Schilderman ◽  
E. Rhijnsburger ◽  
I. Zwingmann ◽  
J.C.S. Kleinjans

Sign in / Sign up

Export Citation Format

Share Document