scholarly journals Minimum Lens Size Supporting the Leaky-Wave Nature of Slit Dipole Antenna at Terahertz Frequency

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Niamat Hussain ◽  
Truong Khang Nguyen ◽  
Haewook Han ◽  
Ikmo Park

We designed a slit dipole antenna backed by an extended hemispherical silicon lens and investigated the minimum lens size in which the slit dipole antenna works as a leaky-wave antenna. The slit dipole antenna consists of a planar feeding structure, which is a center-fed and open-ended slot line. A slit dipole antenna backed by an extended hemispherical silicon lens is investigated over a frequency range from 0.2 to 0.4 THz with the center frequency at 0.3 THz. The numerical results show that the antenna gain responses exhibited an increased level of sensitivity to the lens size and increased linearly with increasing lens radius. The lens with the radius of 1.2λois found to be the best possible minimum lens size for a slit dipole antenna on an extended hemispherical silicon lens.

2018 ◽  
Vol 66 (6) ◽  
pp. 2828-2843 ◽  
Author(s):  
Davide Comite ◽  
Walter Fuscaldo ◽  
Symon K. Podilchak ◽  
Pascual D. Hilario Re ◽  
Victoria Gomez-Guillamon Buendia ◽  
...  

Author(s):  
Shixiao Xiao ◽  
Lianwu Yang

Abstract In this paper, a leaky-wave antenna (LWA) with wide scanning angle and low cross-polarization is proposed based on a T-type folded substrate-integrated waveguide (FSIW). Transverse slots with a sinusoidal distribution pattern are etched on the surface of the FSIW so that transmission lines with slow-wave characteristics can excite and radiate −1 order harmonics. The length of the transverse slot affects the dispersion characteristics of the transmission line, and the sinusoidal modulation period controls the operating range of the LWA. In the frequency range of 8.3–15 GHz, the proposed LWA achieves a wide scanning ranging from backward −42° to forward +68° continuously. The cross-polarization of the beam is also kept at less than −30 dB during this scanning. A prototype is fabricated and measured to confirm the design, and the measured results show an agreement with the simulated one.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Halgurd N. Awl ◽  
Rashad H. Mahmud ◽  
Bakhtiar A. Karim ◽  
Yadgar I. Abdulkarim ◽  
Muharrem Karaaslan ◽  
...  

In this paper, a new design of high gain and wide bandwidth microstrip patch antenna array containing double meander dipole structure is proposed. Two in-phase resonant frequencies in the Ku-band (12–18 GHz) could be achieved in the double meander dipole array structure, which lead to enhance impedance bandwidth without costing extra design section. Besides, further enhanced gain of 2 dBi of the array over the entire operating frequency range has been achieved by introducing a double-layer substrate technique. The proposed antenna has been fabricated using the E33 model LPKF prototyping PCB machine. The measurement results have been performed, and they are in very good agreement with the simulation results. The measured –10 dB impedance bandwidth indicates that the array provides a very wide bandwidth which is around 30% at the center frequency of 15.5 GHz. A stable gain with a peak value of 10 dBi is achieved over the operating frequency range. The E- and H-plane radiation patterns are simulated, and a very low sidelobe level is predicted. The proposed antenna is simple and has relatively low-profile, and it could be a good candidate for millimeter wave communications.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2172
Author(s):  
Yalda Torabi ◽  
Gholamreza Dadashzadeh ◽  
Milad Hadeie ◽  
Homayoon Oraizi ◽  
Ali Lalbakhsh

This paper presents a new layered dielectric leaky-wave antenna (LWA) for the sub-terahertz (THz) frequency range capable of efficient operation at the broadside with a wide beam scanning angle and stable gain. It consists of a conductor-backed alumina dielectric image line (DIL) with two different dielectric layers mounted on top of each other for performance improvement. The upper layer is a high permittivity RO6010 substrate to enhance the directivity as a superstrate and the lower layer is a low-permittivity RT/duroid 5880 substrate stacked on the alumina DIL to prevent the probable excitation of higher-order modes in the DIL channel. A 15-element linear array of radiating overlapped discs is used to mitigate the open stop-band (OSB) problem, fed by the mentioned waveguide, was designed and simulated at frequencies around 170 GHz. The dominant mode of the layered dielectric waveguide is perturbed by the infinite space harmonics generated by two sets of overlapped discs periodically sandwiched between the layers. It exhibited a relatively wide impedance bandwidth of 28.19% (157.5–206 GHz). Its radiation mechanism has been widely studied through simulations. The results revealed that the antenna provides a wide scanning capability through the broadside from −23° to 38°, covering the frequency range between 157.5 GHz and 201.5 GHz. For an array with 15 radiating elements, the simulated peak gain in the band is 15 dBi and the broadside gain is 13.6 dBi at 172 GHz.


2013 ◽  
Vol 2 (10) ◽  
pp. 466-469 ◽  
Author(s):  
Naobumi Michishita ◽  
Woo-Jin Kim ◽  
Yoshihide Yamada

2015 ◽  
Vol 74 (19) ◽  
pp. 1767-1776 ◽  
Author(s):  
V. I. Bezborodov ◽  
O.S. Kosiak ◽  
Ye. M. Kuleshov ◽  
V. V. Yachin

2017 ◽  
Vol 76 (10) ◽  
pp. 929-940 ◽  
Author(s):  
Yu. S. Kovshov ◽  
S. S. Ponomarenko ◽  
S. A. Kishko ◽  
A. A. Likhachev ◽  
S. A. Vlasenko ◽  
...  

2017 ◽  
Vol 3 (3) ◽  
pp. 140
Author(s):  
Suci Rahmatia ◽  
Putri Wulandari ◽  
Nurul Khadiko ◽  
Fitria Gani Sulistya

<p><em>Abstrak </em><strong> - Antena merupakan alat pemancar yang akrab dengan aktifitas sehari-hari dan mudah sekali dijumpai, di rumah, di gedung, bahkan pada alat komunikasi yang digunakan. Salah satu antena yang sering digunakan adalah antena televisi. Antena televisi yang sering digunakan adalah Yagi-Uda yang biasanya dipakai sebagai outdoor antena dan antena dipole yang biasanya digunakan untuk indoor antena. Masing – masing jenis antena memiliki kriteria dan keuntungan berdasarkan dari kebutuhan penggunaannya. Baik antena dipole maupun antena Yagi-Uda memiliki perbedaan diantaranya adalah besar bandwidth, nilai gain, dan pola radiasi. Pada paper ini dapat diketahui bahwa bandwidth yang dimiliki antena yagi-uda lebih besar daripada antena dipole yakni 0.39943 MHz untuk antena yagi-uda dan 0.16569 MHz untuk antena dipole. Begitupula dengan besar Gain yang dimiliki antena Yagi-Uda (6.64 dBi) lebih besar dibandingkan dengan gain dari antena dipole (2.29 dBi). Perbedaan ini dikarenakan faktor elemen director dan ketebalannya.</strong></p><p><strong><br /></strong></p><p><strong><em>Kata Kunci</em></strong> – <em>Atena Televisi, Atena Yagi-Uda, Atena Dipole, Gain, Bandwidth</em></p><p><em> </em></p><p><em>Abstract</em> <strong>- Antenna is a transmitter tool that is familiar with daily activity and easy to find at home, in the building, even on the communication tool used. One of antenna that is often used is a television antenna. Television antennas are often used is Yagi-Uda which is usually used as an outdoor antenna and dipole antenna that is usually used for indoor antennas. Each type of antenna has the criteria and advantages based on the needs of its use. Both dipole antennas and Yagi-Uda antennas have differences among them are bandwidth, gain, and radiation pattern. In this paper it can be seen that the bandwidth of yagi-uda antenna is bigger than dipole antenna that is 0.39943 MHz for Yagi-Uda antenna and 0.16569 MHz for dipole antenna. Neither the large Gain of the Yagi-Uda antenna (6.64 dBi) is greater than the gain of the dipole antenna (2.29 dBi). This difference is due to element factor of director and its thickness.</strong></p><p><strong><br /></strong></p><p><strong><em>Keywords</em></strong><strong> – </strong><em>Television Antenna, Yagi-Uda Antenna, Dipole Antenna, Gain, Bandwidth</em><strong> </strong></p>


Sign in / Sign up

Export Citation Format

Share Document