scholarly journals Collision Sensing Using Force/Torque Sensor

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Quan Leng ◽  
Zheng-Cang Chen ◽  
Xu He ◽  
Yang Zhang ◽  
Wei Zhang

Collision sensing including collision position, collision direction, and force size could make robots smoothly interact with environment, so that the robots can strongly adapt to the outside world. Skin sensor imitates principles of human skin using special material and physical structure to obtain collision information, but this method has some disadvantages, such as complex design, low sampling rate, and poor generality. In this paper, a new method using force/torque sensor to calculate collision position, collision direction, and force size is proposed. Detailed algorithm is elaborated based on physical principle and unified modeling method for basic geometric surface. Gravity compensation and dynamic compensation are also introduced for working manipulators/robots in gravity and dynamic environment. In addition, considering algorithm solvability and uniqueness, four constraints are proposed, which are force constraint, geometric constraint, normal vector constraint, and current mutation constraint. In order to solve conflict solution of algorithm in redundant constraints, compatibility solution analysis is proposed. Finally, a simulation experiment shows that the proposed method can achieve collision information efficiently and accurately.

Author(s):  
Ashkan Ghanbarzadeh-Dagheyan ◽  
Juan Heredia-Juesas ◽  
Chang Liu ◽  
Ali Molaei ◽  
Jose Angel Martinez-Lorenzo

Compressive sensing (CS) theory states that, if certain conditions are met, a signal can be retrieved at a sampling rate that is lower than what Nyquist theorem requires. Among these conditions are the sparsity of the signal and the incoherence of the sensing matrix, which is constructed based on how the sensing system is designed. One effective method to render the sensing matrix incoherent is to use random processes in its construction. Diverse approaches have been proposed to randomize the sensing matrix including transmission at random transmitter positions and spectral coding with the use of a physical structure that responds very differently at disparate frequencies. In this work, a holey cavity with various frequency modes is used to spectrally code the ultrasound wave fields. Then, with the use of CS theory and simulations, it is shown that the sensing system that is equipped with such a cavity performs meaningfully better than a regular system in terms of sensing capacity, beam focusing, and imaging. What is more, the validity of Born approximation is investigated in this work to show its extent of applicability in imaging relatively small targets. Due to computational limitations, the simulation domain has been selected to be comparatively small; yet, the achieved results evidently show the concept and warrant further studies on holey cavities in ultrasound imaging, including their fabrication and experimental corroboration. The decrease in the number of measurements necessary for correct image reconstruction can make ultrasound sensing systems more efficient in size and scan time in a variety of applications including medical diagnosis, non-destructive testing, and monitoring.


Author(s):  
Artem Meyer ◽  

This article is the logical sequel of my previous one, which deals with literature review in terms of self-driving portable vehicles with functionality of movement inside undetermined dynamic environment. That research paper describes the process and results of the best movement algorithm selection. Also it contains review of available virtual platforms, frameworks and existing non-commercial projects. In this article the research was continued and made more specific. I decided to concentrate on universal multi-module platforms, which can be used to standardize the production of self-driving portable vehicles. This study covers the results of conceptual architecture development. Unified Modeling Language (UML) was selected as the notation for it. Also there are three diagrams, that were defined to illustrate this architecture: Use Case diagram, sequence diagram and deployment diagram.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Author(s):  
E. Voelkl ◽  
L. F. Allard

The conventional discrete Fourier transform can be extended to a discrete Extended Fourier transform (EFT). The EFT allows to work with discrete data in close analogy to the optical bench, where continuous data are processed. The EFT includes a capability to increase or decrease the resolution in Fourier space (thus the argument that CCD cameras with a higher number of pixels to increase the resolution in Fourier space is no longer valid). Fourier transforms may also be shifted with arbitrary increments, which is important in electron holography. Still, the analogy between the optical bench and discrete optics on a computer is limited by the Nyquist limit. In this abstract we discuss the capability with the EFT to change the initial sampling rate si of a recorded or simulated image to any other(final) sampling rate sf.


2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


2020 ◽  
Vol 5 (1) ◽  
pp. 78
Author(s):  
Ade Sumaedi ◽  
Makhsun Makhsun ◽  
Achmad Hindasyah

PT. Duta Nichirindo Pratama is a company engaged in the field of Autoparts Manufacture. Barcode is the identity of an item / product on the package. Barcode technology has been used as the identity of goods in a production. Barcodes are used to facilitate the identification of goods produced. Paste the barcode on the packaging of packaging results at PT. Duta Nichirindo Pratama is done manually, but there are often errors attached to the barcode on a similar packaging. This research will design and create a system based on Visual Basic.Net and Arduino to select barcode attachment errors that have the potential to be sent to consumers. The system is designed using Unified Modeling Language (UML) diagrams, database design and interface menu design. The system created will then be tested to detect the black box test. With a computing-based design system that functions to detect barcodes on the packaging automatically, the problem of sticking barcodes on the packaging can be detected.


2007 ◽  
pp. 5-27 ◽  
Author(s):  
J. Searle

The author claims that an institution is any collectively accepted system of rules (procedures, practices) that enable us to create institutional facts. These rules typically have the form of X counts as Y in C, where an object, person, or state of affairs X is assigned a special status, the Y status, such that the new status enables the person or object to perform functions that it could not perform solely in virtue of its physical structure, but requires as a necessary condition the assignment of the status. The creation of an institutional fact is, thus, the collective assignment of a status function. The typical point of the creation of institutional facts by assigning status functions is to create deontic powers. So typically when we assign a status function Y to some object or person X we have created a situation in which we accept that a person S who stands in the appropriate relation to X is such that (S has power (S does A)). The whole analysis then gives us a systematic set of relationships between collective intentionality, the assignment of function, the assignment of status functions, constitutive rules, institutional facts, and deontic powers.


Author(s):  
Yu. E. Moskalenko ◽  
T. I. Kravchenko ◽  
Yu. V. Novozhilova

Introduction. Slow fl uctuations in the volume and pressure of liquids in the cranial cavity have been known for a long time and have been studied for more than 100 years. However, their quantitative indicators and their practical signifi cance remain unclear until now due to the diffi culties of research. Nevertheless, it was found that they were connected with the brain activity, which made it possible to use them as one of the physiological indicators in studying the problems of manned space fl ights. Goal of research — to study the possibility of using spectral analysis of slow fl uctuations of the volume of liquids inside the cranium in order to realize the quantitative assessment of their indicators with the use of modern microelectronics and computer technology.Materials and methods. In order to solve this problem we created a complex, in which rheoencephalograph-RG-01 («Mizar») was used as a converter-modulator of physiological signals into electrical oscillations. The device was connected with the ADC (Firm «ADIstrument»), Its software allows to calculate the spectrogram with a sampling rate of 128 kHz. Studies were conducted on volunteers of younger, middle and older age groups. The respiratory rate and the electrocardiography were registered together with the rheoencephalography. Electrodes were fi xed on the volonteers′ fronto-mastoid area.Results. Slow fl uctuations the cranium representan independent physiological phenomenon. The most considerable and valuable were fl uctuations in 0,1–0,3 Hz. It was found that current frequency of 100 or 200 kHz and frequency for quantization of 80–100 kHz was optimal for performing their spectrograms. The structure of such diagram consists of 4–7 peaks with amplitude of 0,4–0,7 units compared with REG pulse amplitude. They depend on age and are characterized by hemispheric asymmetry. Spectral diagrams of slow fl ucation inside cranium are representing inpendent physiological phenomenon. These fl uctuations are not connected by common origin, with heart activity and respiration. They are connected by nature with brain activity and PRM.Conclusion. Can be an informative method for diagnostic and assessment of general status of osteopathic patients well as for the assessment of mechanisms of action of some osteopathic techniques.


Sign in / Sign up

Export Citation Format

Share Document