scholarly journals Glycoproteins From Rabdosia japonica var. glaucocalyx Regulate Macrophage Polarization and Alleviate Lipopolysaccharide-Induced Acute Lung Injury in Mice via TLR4/NF-κB Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
An-qi Ren ◽  
Hui-jun Wang ◽  
Hai-yan Zhu ◽  
Guan Ye ◽  
Kun Li ◽  
...  

Background and Aims:Rabdosia japonica var. glaucocalyx is a traditional Chinese medicine (TCM) for various inflammatory diseases. This present work aimed to investigate the protective effects of R. japonica var. glaucocalyx glycoproteins on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the potential mechanism.Methods: Glycoproteins (XPS) were isolated from R. japonica var. glaucocalyx, and homogeneous glycoprotein (XPS5-1) was purified from XPS. ANA-1 cells were used to observe the effect of glycoproteins on the secretion of inflammatory mediators by enzyme-linked immunosorbent assay (ELISA). Flow cytometry assay, immunofluorescence assay, and Western blot analysis were performed to detect macrophage polarization in vitro. The ALI model was induced by LPS via intratracheal instillation, and XPS (20, 40, and 80 mg/kg) was administered intragastrically 2 h later. The mechanisms of XPS against ALI were investigated by Western blot, ELISA, and immunohistochemistry.Results:In vitro, XPS and XPS5-1 downregulated LPS-induced proinflammatory mediators production including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and nitric oxide (NO) and upregulated LPS-induced IL-10 secretion. The LPS-stimulated macrophage polarization was also modulated from M1 to M2. In vivo, XPS maintained pulmonary histology with significantly reducing protein concentration and numbers of mononuclear cells in bronchoalveolar lavage fluid (BALF). The level of IL-10 in BALF was upregulated by XPS treatment. The level of cytokines including TNF-α, IL-1β, and IL-6 was downregulated. XPS also decreased infiltration of macrophages and polymorphonuclear leukocytes (PMNs) in lung. XPS suppressed the expression of key proteins in the TLR4/NF-κB signal pathway.Conclusion: XPS was demonstrated to be a potential agent for treating ALI. Our findings might provide evidence supporting the traditional application of R. japonica var. glaucocalyx in inflammation-linked diseases.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Quanxin Ma ◽  
Kai Wang ◽  
Qinqin Yang ◽  
Shun Ping ◽  
Weichun Zhao ◽  
...  

Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI), and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB) in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β), IL-6, monocyte chemotactic protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ke Xie ◽  
Yu-sen Chai ◽  
Shi-hui Lin ◽  
Fang Xu ◽  
Chuan-jiang Wang

Objectives. Inflammatory disease characterized by clinical destructive respiratory disorder is called acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Studies have shown that luteolin exerts anti-inflammatory effects by increasing regulatory T cells (Tregs). In this study, we aimed to determine the effects of luteolin on ALI/ARDS and Treg differentiation. Methods. In this paper, we used cecal ligation puncture (CLP) to generate an ALI mouse model to determine the effects of luteolin on ALI/ARDS. Lung tissues were stained for interleukin- (IL-) 17A and myeloperoxidase (MPO) by immunohistochemical analysis. The levels of Treg-related cytokines in serum and bronchoalveolar lavage fluid (BALF) of mice were detected. The protein levels of NF-κB p65 in lung tissues were measured. Macrophage phenotypes in lung tissues were measured using immunofluorescence. The proportion of Tregs in splenic mononuclear cells and peripheral blood mononuclear cells (PBMCs) was quantified. Furthermore, in vitro, we evaluated the effects of luteolin on Treg differentiation, and the effects of IL-10 immune regulation on macrophage polarization were examined. Results. Luteolin alleviated lung injury and suppressed uncontrolled inflammation and downregulated IL-17A, MPO, and NF-κB in the lungs of CLP-induced mouse models. At this time, luteolin upregulated the level of IL-10 in serum and BALF and the frequency of CD4+CD25+FOXP3+ Tregs in PBMCs and splenic mononuclear cells of CLP mice. Luteolin treatment decreased the proportion of M1 macrophages and increased the proportion of M2 macrophages in lungs of CLP-induced mouse models. In vitro, administration of luteolin significantly induced Treg differentiation, and IL-10 promoted the polarization of M2 macrophages but reduced the polarization of M1 macrophages. Conclusions. Luteolin alleviated lung injury and suppressed uncontrolled inflammation by inducing the differentiation of CD4+CD25+FOXP3+ Tregs and upregulating the expression of IL-10. Furthermore, the anti-inflammatory cytokine IL-10 promoted polarization of M2 macrophages in vitro. Luteolin-induced Treg differentiation from naïve CD4+ T cells may be a potential mechanism for regulating IL-10 production.


Inflammation ◽  
2021 ◽  
Author(s):  
Yuhan Liu ◽  
Luorui Shang ◽  
Jiabin Zhou ◽  
Guangtao Pan ◽  
Fangyuan Zhou ◽  
...  

Abstract—Emodin, the effective component of the traditional Chinese medicine Dahuang, has anti-inflammatory effects. However, the protective effects and potential mechanisms of emodin are not clear. This study investigated the protective effects and potential mechanisms of emodin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in vitro and in vivo. In vivo, we designed an LPS-induced ALI rat model. In vitro, we chose the J774A.1 cell line to establish an inflammatory cellular model, and knocked down NOD-like receptor family pyrin domain containing 3 (NLRP3) using small interfering RNA. The mRNA and protein expression of NLRP3, a C-terminal caspase recruitment domain (ASC), caspase 1 (CASP1), and gasdermin D (GSDMD) in cells and lung tissues were detected by western blot and real-time quantitative polymerase chain reaction (PCR). The expression levels of interleukin 1 beta (IL-1β) and IL-18 in the serum and supernatant were determined by the enzyme-linked immunosorbent assay. The degree of pathological injury in lung tissue was evaluated by hematoxylin and eosin (H&E) staining. In vitro, we demonstrated that emodin could inhibit NLRP3 and then inhibit the expression of ASC, CASP1, GSDMD, IL-1β, and IL-18. In vivo, we confirmed that emodin had protective effects on LPS-induced ALI and inhibitory effects on NLRP3 inflammasome -dependent pyroptosis. Emodin showed excellent protective effects against LPS-induced ALI by regulating the NLRP3 inflammasome-dependent pyroptosis signaling pathway.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Yang Jiao ◽  
Ti Zhang ◽  
Chengmi Zhang ◽  
Haiying Ji ◽  
Xingyu Tong ◽  
...  

Abstract Background Polymorphonuclear neutrophils (PMNs) play an important role in sepsis-related acute lung injury (ALI). Accumulating evidence suggests PMN-derived exosomes as a new subcellular entity acting as a fundamental link between PMN-driven inflammation and tissue damage. However, the role of PMN-derived exosomes in sepsis-related ALI and the underlying mechanisms remains unclear. Methods Tumor necrosis factor-α (TNF-α), a key regulator of innate immunity in sepsis-related ALI, was used to stimulate PMNs from healthy C57BL/6J mice in vitro. Exosomes isolated from the supernatant were injected to C57BL/6J wild-type mice intraperitoneally (i.p.) and then examined for lung inflammation, macrophage (Mϕ) polarization and pyroptosis. In vitro co-culture system was applied where the mouse Raw264.7 macrophages or bone marrow-derived macrophages (BMDMs) were co-cultured with PMN-derived exosomes to further confirm the results of in vivo animal study and explore the potential mechanisms involved. Results Exosomes released by TNF-α-stimulated PMNs (TNF-Exo) promoted M1 macrophage activation after in vivo i.p. injection or in vitro co-culture. In addition, TNF-Exo primed macrophage for pyroptosis by upregulating NOD-like receptor 3 (NLRP3) inflammasome expression through nuclear factor κB (NF-κB) signaling pathway. Mechanistic studies demonstrated that miR-30d-5p mediated the function of TNF-Exo by targeting suppressor of cytokine signaling (SOCS-1) and sirtuin 1 (SIRT1) in macrophages. Furthermore, intravenous administration of miR-30d-5p inhibitors significantly decreased TNF-Exo or cecal ligation and puncture (CLP)-induced M1 macrophage activation and macrophage death in the lung, as well as the histological lesions. Conclusions The present study demonstrated that exosomal miR-30d-5p from PMNs contributed to sepsis-related ALI by inducing M1 macrophage polarization and priming macrophage pyroptosis through activating NF-κB signaling. These findings suggest a novel mechanism of PMN-Mϕ interaction in sepsis-related ALI, which may provide new therapeutic strategies in sepsis patients.


2021 ◽  
Author(s):  
Yumo Li ◽  
Binbin Wu ◽  
Cong Hu ◽  
Jie Hu ◽  
Qingquan Lian ◽  
...  

Abstract BackgroundSepsis often results in acute lung injury (ALI). Sedative dexmedetomidine (Dex) was reported to protect cells and organs due to its direct cellular effects. This study aims to investigate the role of vagus nerves on Dex induced lung protection in a model of lipopolysaccharide (LPS)-induced ALI in rats. MethodsThe bilateral cervical vagus nerve of male Sprague-Dawley rats was sectioned or just exposed without section as sham surgery. The ALI was induced by intraperitoneal injection of LPS (1 or 10 mg/kg). After LPS administration, Dex antagonist yohimbine (YOH) (1 mg/kg) and/or Dex (25 μg/kg) was injected intraperitoneally at 0, 4, 8 and 12 hours to rats with or without vagotomy. The severity of ALI was determined with survival curve analysis and lung pathological scores of haematoxylin and eosin (H-E) staining sections. The plasma concentrations of interleukin 1beta (IL-1β), tumour necrosis factor-alpha (TNF-α), catecholamine (CA) and acetylcholine (Ach) were measured with enzyme-linked immunosorbent assay (ELISA). ResultsThe median survival time of LPS-induced ALI rats was significantly prolonged by Dex (22 hours, 50% CI, [31.25, 90.63]) compared that in the LPS group (14 hours, 50% CI, [18.75, 81.25], P < 0.05), and the acute lung injury score was significantly reduced by Dex (6.5, 50% CI, [5.75, 7.5] vs 11.5, 50% CI, [10.75, 12.50] in the LPS group, P < 0.01). However, these protective effects of Dex were significantly reduced by either YOH administration or vagotomy. Dex significantly decreased LPS-induced plasma IL-1β (pg/ml) (20.75 ± 0.78 vs. 30.22 ± 2.62, P < 0.01), TNF-α (pg/ml) (205.30 ± 9.39 vs. 273.40 ± 14.50, P < 0.01), and CA (pg/ml) (825.70 ± 43.46 vs. 1188.00 ± 64.40, P < 0.01) but increased the secretion of Ach (pg/ml) (507.20 ± 49.52 vs. 296.50 ± 62.44, P < 0.01); these effects of Dex was partially abolished by vagotomy. ConclusionsOur data suggested that Dex increased vagal nerve tone which partially contributed to its anti-inflammatory and lung protective effects. The indirect anti-inflammation and direct cytoprotection of Dex are likely through high vagal nerve tone and α 2 -adrenoceptor activation, respectively.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingsong Sun ◽  
Man Luo ◽  
Zhiwei Gao ◽  
Xiang Han ◽  
Weiqin Wu ◽  
...  

Abstract Background Acute lung injury (ALI) is a pulmonary disorder that leads to acute respiration failure and thereby results in a high mortality worldwide. Increasing studies have indicated that toll-like receptor 4 (TLR4) is a promoter in ALI, and we aimed to explore the underlying upstream mechanism of TLR4 in ALI. Methods We used lipopolysaccharide (LPS) to induce an acute inflammatory response in vitro model and a murine mouse model. A wide range of experiments including reverse transcription quantitative polymerase chain reaction, western blot, enzyme linked immunosorbent assay, flow cytometry, hematoxylin–eosin staining, RNA immunoprecipitation, luciferase activity and caspase-3 activity detection assays were conducted to figure out the expression status, specific role and potential upstream mechanism of TLR4 in ALI. Result TLR4 expression was upregulated in ALI mice and LPS-treated primary bronchial/tracheal epithelial cells. Moreover, miR-26a-5p was confirmed to target TLR4 according to results of luciferase reporter assay. In addition, miR-26a-5p overexpression decreased the contents of proinflammatory factors and inhibited cell apoptosis, while upregulation of TLR4 reversed these effects of miR-26a-5p mimics, implying that miR-26a-5p alleviated ALI by regulating TLR4. Afterwards, OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was identified to bind with miR-26a-5p. Functionally, OIP5-AS1 upregulation promoted the inflammation and miR-26a-5p overexpression counteracted the influence of OIP5-AS1 upregulation on cell inflammatory response and apoptosis. Conclusion OIP5-AS1 promotes ALI by regulating the miR-26a-5p/TLR4 axis in ALI mice and LPS-treated cells, which indicates a promising insight into diagnostics and therapeutics in ALI.


2017 ◽  
Vol 34 ◽  
pp. 181-188 ◽  
Author(s):  
Heung Joo Yuk ◽  
Jae Won Lee ◽  
Hyun Ah Park ◽  
Ok-Kyoung Kwon ◽  
Kyeong-Hwa Seo ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junli Sun ◽  
Keke Xin ◽  
Chenghui Leng ◽  
Jianlin Ge

Abstract Background Long noncoding RNAs contribute to various inflammatory diseases, including sepsis. We explore the role of small nucleolar RNA host gene 16 (SNHG16) in sepsis-mediated acute lung injury (ALI) and inflammation. Methods A sepsis-induced ALI rat model was constructed by the cecal ligation and perforation method. The profiles of SNHG16, miR-128-3p, and high-mobility group box 3 (HMGB3) were monitored by quantitative reverse transcription PCR and Western blot. The pathologic changes of lung tissues were evaluated by Hematoxylin–Eosin staining, immunohistochemistry, and dry and wet method. Meanwhile, the pro-inflammatory factors and proteins were determined by ELISA and Western blot. In contrast, a sepsis model in BEAS-2B was induced with lipopolysaccharide (LPS) to verify the effects of SNHG16/miR-128-3p/HMGB3 on lung epithelial cell viability and apoptosis. Results As a result, SNHG16 and HMGB3 were up-regulated, while miR-128-3p was down-regulated in sepsis-induced ALI both in vivo and in vitro. Inhibiting SNHG16 reduced the apoptosis and inflammation in the sepsis-induced ALI model. Overexpressing SNHG16 promoted LPS-mediated lung epithelial apoptosis and inhibited cell viability and inflammation, while miR-128-3p had the opposite effects. Mechanistically, SNHG16 targeted miR-128-3p and attenuated its expression, while miR-128-3p targeted the 3′ untranslated region of HMGB3. Conclusions Overall, down-regulating SNHG16 alleviated the sepsis-mediated ALI by regulating miR-128-3p/HMGB3.


2019 ◽  
Vol 11 (16) ◽  
pp. 2081-2094 ◽  
Author(s):  
Tingting Guo ◽  
Zhenzhong Su ◽  
Qi Wang ◽  
Wei Hou ◽  
Junyao Li ◽  
...  

Aim: Thus far, the anti-inflammatory effect of vanillin in acute lung injury (ALI) has not been studied. This study aimed to investigate the effect of vanillin in lipopolysaccharide (LPS)-induced ALI. Results & methodology: Our study detected the anti-inflammatory effects of vanillin by ELISA and western blot, respectively. Pretreatment of mice with vanillin significantly attenuated LPS-stimulated lung histopathological changes, myeloperoxidase activity and expression levels of proinflammatory cytokines by inhibiting the phosphorylation activities of ERK1/2, p38, AKT and NF-κB p65. In addition, vanillin inhibited LPS-induced TNF-α and IL-6 expression in RAW264.7 cells via ERK1/2, p38 and NF-κB signaling. Conclusion: Vanillin can inhibit macrophage activation and lung inflammation, which suggests new insights for clinical treatment of ALI.


2016 ◽  
Vol 311 (2) ◽  
pp. L517-L524 ◽  
Author(s):  
Kaiser M. Bijli ◽  
Fabeha Fazal ◽  
Spencer A. Slavin ◽  
Antony Leonard ◽  
Valerie Grose ◽  
...  

Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε−/− mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε−/− mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε+/+ mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI.


Sign in / Sign up

Export Citation Format

Share Document