scholarly journals The Exercising Brain: Changes in Functional Connectivity Induced by an Integrated Multimodal Cognitive and Whole-Body Coordination Training

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Traute Demirakca ◽  
Vita Cardinale ◽  
Sven Dehn ◽  
Matthias Ruf ◽  
Gabriele Ende

This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation.

2019 ◽  
Author(s):  
Alican Nalci ◽  
Wenjing Luo ◽  
Thomas T. Liu

AbstractIn resting-state functional MRI, the correlation between blood-oxygenation-level-dependent (BOLD) signals across brain regions is used to estimate the functional connectivity (FC) of the brain. FC estimates are prone to the influence of nuisance factors including scanner-related artifacts and physiological modulations of the BOLD signal. Nuisance regression is widely performed to reduce the effect of nuisance factors on FC estimates on a per-scan basis. However, a dedicated analysis of nuisance effects on the variability of FC metrics across a collection of scans has been lacking. This work investigates the effects of nuisance factors on the variability of FC estimates across a collection of scans both before and after nuisance regression. Inter-scan variations in FC estimates are shown to be significantly correlated with the geometric norms of various nuisance terms, including head motion measurements, signals derived from white-matter and cerebrospinal regions, and the whole-brain global signal (GS) both before and after nuisance regression. In addition, it is shown that GS regression (GSR) can introduce GS norm-related fluctuations that are negatively correlated with inter-scan FC estimates. The empirical results are shown to be largely consistent with the predictions of a theoretical framework previously developed for the characterization of dynamic FC measures. This work shows that caution must be exercised when interpreting inter-scan FC measures across scans both before and after nuisance regression.


Author(s):  
Tom Salomon ◽  
Adi Cohen ◽  
Daniel Barazany ◽  
Gal Ben-Zvi ◽  
Rotem Botvinik-Nezer ◽  
...  

AbstractThe COVID-19 outbreak introduced unprecedented health-risks, as well as pressure on the financial, social, and psychological well-being due to the response to the outbreak. Here, we examined the manifestations of the COVID-19 outbreak on the brain structure in the healthy population, following the initial phase of the pandemic in Israel. We pre-registered our hypothesis that the intense experience of the outbreak potentially induced stress-related brain modifications. Volumetric changes in n = 50 participants who were scanned before and after the COVID-19 outbreak and lockdown, were compared with n = 50 control participants who were scanned twice prior to the pandemic. The pandemic provided a rare opportunity to examine brain plasticity in a natural experiment. We found volumetric increases in bilateral amygdalae, putamen, and the anterior temporal cortices. Changes in the amygdalae diminished as time elapsed from lockdown relief, suggesting that the intense experience associated with the pandemic outbreak induced transient volumetric changes in brain regions commonly associated with stress and anxiety.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mallory A. Hagadorn ◽  
Karlee Eck ◽  
Matthew Del Grosso ◽  
Xavier Haemmerle ◽  
William T. Wcislo ◽  
...  

AbstractA well-documented phenomenon among social insects is that brain changes occur prior to or at the onset of certain experiences, potentially serving to prime the brain for specific tasks. This insight comes almost exclusively from studies considering developmental maturation in females. As a result, it is unclear whether age-related brain plasticity is consistent across sexes, and to what extent developmental patterns differ. Using confocal microscopy and volumetric analyses, we investigated age-related brain changes coinciding with sexual maturation in the males of the facultatively eusocial sweat bee, Megalopta genalis, and the obligately eusocial bumble bee, Bombus impatiens. We compared volumetric measurements between newly eclosed and reproductively mature males kept isolated in the lab. We found expansion of the mushroom bodies—brain regions associated with learning and memory—with maturation, which were consistent across both species. This age-related plasticity may, therefore, play a functionally-relevant role in preparing male bees for mating, and suggests that developmentally-driven neural restructuring can occur in males, even in species where it is absent in females.


2020 ◽  
Vol 19 (6) ◽  
pp. 466-477
Author(s):  
Saïd Boujraf ◽  
Rachida Belaïch ◽  
Abdelkhalek Housni ◽  
Badreeddine Alami ◽  
Tariq Skalli ◽  
...  

Objective: The aim of this paper is to demonstrate the impact of hemodialysis (HD) using synthetic Helixone membrane on brain functional control reorganization and plasticity in the cortical area generated while Oxidative Stress (OS) would be the main impacting agent. Methods: Indeed, 9 chronic HD patients underwent identical brain BOLD-fMRI assessment using the motor paradigm immediately before and after the same HD sessions. To assess the oxidative stress, the same patients underwent biological-assessment, including Malondialdehyde (MDA) and Total- Antioxidant-Activity (TAOA) reported in earlier papers. Results: BOLD-fMRI maps of motor areas obtained from HD-patients before and after HD sessions revealed a significant enhancement of activation volume of the studied motor cortex after HD reflecting brain plasticity. Results were correlated with OS assessed by the measurement of MDA and TAOA; this correlation was close to 1. Conclusion: Indeed, HD enhances the inflammatory state of brain tissues reflected by the increased OS. The functional brain reaction demonstrated a functional activity reorganization to overcome the inflammatory state and OS enhanced by HD process. This functional activity reorganization reveals brain plasticity induced by OS originated by HD.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicole M. Wanner ◽  
Mathia Colwell ◽  
Chelsea Drown ◽  
Christopher Faulk

Abstract Background Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. Results F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. Conclusions These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.


2021 ◽  
pp. jeb.238899
Author(s):  
Mallory A. Hagadorn ◽  
Makenna M. Johnson ◽  
Adam R. Smith ◽  
Marc A. Seid ◽  
Karen M. Kapheim

In social insects, changes in behavior are often accompanied by structural changes in the brain. This neuroplasticity may come with experience (experience-dependent) or age (experience-expectant). Yet, the evolutionary relationship between neuroplasticity and sociality is unclear, because we know little about neuroplasticity in the solitary relatives of social species. We used confocal microscopy to measure brain changes in response to age and experience in a solitary halictid bee (Nomia melanderi). First, we compared the volume of individual brain regions among newly-emerged females, laboratory females deprived of reproductive and foraging experience, and free-flying, nesting females. Experience, but not age, led to significant expansion of the mushroom bodies—higher-order processing centers associated with learning and memory. Next, we investigated how social experience influences neuroplasticity by comparing the brains of females kept in the laboratory either alone or paired with another female. Paired females had significantly larger olfactory regions of the mushroom bodies. Together, these experimental results indicate that experience-dependent neuroplasticity is common to both solitary and social taxa, whereas experience-expectant neuroplasticity may be an adaptation to life in a social colony. Further, neuroplasticity in response to social chemical signals may have facilitated the evolution of sociality.


2021 ◽  
Author(s):  
Xin Di ◽  
Zhiguo Zhang ◽  
Ting Xu ◽  
Bharat B. Biswal

AbstractSpatially remote brain regions show synchronized activity as typically revealed by correlated functional MRI (fMRI) signals. An emerging line of research has focused on the temporal fluctuations of connectivity, however, its relationships with stable connectivity have not been clearly illustrated. We examined the stable and dynamic connectivity from fMRI data when the participants watched four different movie clips. Using inter-individual correlation, we were able to estimate functionally meaningful dynamic connectivity associated with different movies. Widespread consistent dynamic connectivity was observed for each movie clip as well as their differences between clips. A cartoon movie clip showed higher consistent dynamic connectivity with the posterior cingulate cortex and supramarginal gyrus, while a court drama clip showed higher dynamic connectivity with the auditory cortex and temporoparietal junction, which suggest the involvement of specific brain processing for different movie contents. In contrast, stable connectivity was highly similar among the movie clips, and showed fewer statistical significant differences. The patterns of dynamic connectivity had higher accuracy for classifications of different movie clips than the stable connectivity and regional activity. These results support the functional significance of dynamic connectivity in reflecting functional brain changes, which could provide more functionally related information than stable connectivity.


Meditation refers to a state of mind of relaxation and concentration, where generally the mind and body is at rest. The process of meditation reflects the state of the brain which is distinct from sleep or typical wakeful states of consciousness. Meditative practices usually involve regulation of emotions and monitoring of attention. Over the past decade there has been a tremendous increase in an interest to study the neural mechanisms involved in meditative practices. It could also be beneficial to explore if the effect of meditation is altered by the number of years of meditation practice. Functional Magnetic Resonance Imaging (fMRI) is a very useful imaging technique which can be used to perform this analysis due to its inherent benefits, mainly it being a non-invasive technique. Functional activation and connectivity analysis can be performed on the fMRI data to find the active regions and the connectivity in the brain regions. Functional connectivity is defined as a simple temporal correlation between anatomically separate, active neural regions. Functional connectivity gives the statistical dependencies between regional time series. It is a statistical concept and is quantified using metrics like Correlation. In this study, a comparison is made between functional connectivity in the brain regions of long term meditation practitioners (LTP) and short-term meditation practitioners (STP) to see the differences and similarities in the connectivity patterns. From the analysis, it is evident that in fact there is a difference in connectivity between long term and short term practitioners and hence continuous practice of meditation can have long term effects.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


Author(s):  
Sanghee Park ◽  
David D. Church ◽  
Carlene Starck ◽  
Scott E. Schutzler ◽  
Gohar Azhar ◽  
...  

Abstract Purpose The purpose of the study was to determine if an actinidin protease aids gastric digestion and the protein anabolic response to dietary protein. Methods Hayward green kiwifruit (containing an actinidin protease) and Hort 16A gold kiwifruit (devoid of actinidin protease) were given in conjunction with a beef meal to healthy older subjects. Twelve healthy older males (N = 6) and females (N = 6) were studied with a randomized, double-blinded, crossover design to assess muscle and whole-body protein metabolism before and after ingestion of kiwifruit and 100 g of ground beef. Subjects consumed 2 of each variety of kiwifruit daily for 14 d prior to each metabolic study, and again during each study with beef intake. Results Hayward green kiwifruit consumption with beef resulted in a more rapid increase in peripheral plasma essential amino acid concentrations. There were significant time by kiwifruit intake interactions for plasma concentrations of EAAs, branched chain amino acids (BCAAs), and leucine (P < 0.01). However, there was no difference in the total amount of EAAs absorbed. As a result, there were no differences between kiwifruit in any of the measured parameters of protein kinetics. Conclusion Consumption of Hayward green kiwifruit, with a beef meal facilitates protein digestion and absorption of the constituent amino acids as compared to Hort 16A gold kiwifruit. Clinical trial NCT04356573, April 21, 2020 “retrospectively registered”.


Sign in / Sign up

Export Citation Format

Share Document