scholarly journals A New Feature Extraction Technique Based on 1D Local Binary Pattern for Gear Fault Detection

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Zrar Kh. Abdul ◽  
Abdulbasit Al-Talabani ◽  
Ayub O. Abdulrahman

Gear fault detection is one of the underlying research areas in the field of condition monitoring of rotating machines. Many methods have been proposed as an approach. One of the major tasks to obtain the best fault detection is to examine what type of feature(s) should be taken out to clarify/improve the situation. In this paper, a new method is used to extract features from the vibration signal, called 1D local binary pattern (1D LBP). Vibration signals of a rotating machine with normal, break, and crack gears are processed for feature extraction. The extracted features from the original signals are utilized as inputs to a classifier based onk-Nearest Neighbour (k-NN) and Support Vector Machine (SVM) for three classes (normal, break, or crack). The effectiveness of the proposed approach is evaluated for gear fault detection, on the vibration data obtained from the Prognostic Health Monitoring (PHM’09) Data Challenge. The experiment results show that the 1D LBP method can extract the effective and relevant features for detecting fault in the gear. Moreover, we have adopted the LOSO and LOLO cross-validation approaches to investigate the effects of speed and load in fault detection.

2016 ◽  
Vol 8 (12) ◽  
pp. 168781401668308 ◽  
Author(s):  
Shuangyuan Wang ◽  
Yixiang Huang ◽  
Liang Gong ◽  
Lin Li ◽  
Chengliang Liu

Vibration signals reflecting different kinds of machinery conditions are very useful for fault diagnosis. However, vibration signal characteristics are not the same for different types of equipment and patterns of failure. This available information is often lost in structureless condition diagnosis models. We propose a structured Fisher discrimination sparse coding–based fault diagnosis scheme to improve the feature extraction procedure considering both efficiency and effectiveness. There are three major components: (1) a structured dictionary for synthesizing the vibration signals that is learned by structure Fisher discrimination dictionary learning, (2) a tree-structured sparse coding to extract sparse representation coefficients from vibration signals to represent fault features, and (3) a support vector machine’s classifier on the features to recognize different faults. The proposed algorithm is verified on a standard bearing fault data set and a worm gear fault experiment. Test results have proved that the proposed method can achieve better performance with considerable efficiency and generalization ability.


Author(s):  
Dong Sik Gu ◽  
Byeong Keun Choi ◽  
Byeong Su Kim ◽  
Jeong Hwan Lee ◽  
Jong Duk Son ◽  
...  

Vibration analysis is widely used in machinery diagnosis and the wavelet transform has also been implemented in many applications in the condition monitoring of machinery. In contrast to previous applications, this paper examines whether acoustic signal can be used effectively along vibration signal to detect the various local fault, in local fault of gearboxes using the wavelet transform. Moreover, envelop analysis is well known as useful tool for the detection of rolling element bearing fault. In this paper, acoustic emission (AE) sensor is employed to detect gearbox damage by installing them around bearing housing at driven-end side. Signal processing is conducted by wavelet transform and enveloping to detect the fault all at once gearbox and bearing using AE signal. Result of fault detection is presented using some general statistical features and a proposed new feature (RGF: Ratio of Gear Frequency) for gear fault calculated from AE signal with different condition.


2018 ◽  
Vol 14 (02) ◽  
pp. 60
Author(s):  
Wang Fei ◽  
Fang Liqing ◽  
Qi Ziyuan

<p>As the vibration signal <a href="app:ds:characteristic" target="_self">characteristic</a>s of hydraulic pump <a href="app:ds:present%20(a%20certain%20appearance)" target="_self">present</a> non-stationary and the fault features is difficult to extract, a new feature extraction method was proposed .This approach combines wavelet packet analysis techniques, fuzzy entropy and LLTSA (liner local tangent space alignment) which is one of typical manifold learning methods to <a href="app:ds:extract" target="_self">extract</a>ing  <a href="app:ds:fault" target="_self">fault</a>  feature. Firstly, the vibration signals were decomposed into eight signals in different <a href="app:ds:scale" target="_self">scale</a>s, then the fuzzy entropies of signals were calculated to constitute eight <a href="app:ds:many%20dimensions" target="_self">dimensions</a> <a href="app:ds:feature" target="_self">feature</a> vector. Secondly, LLTSA method was applied to compress the high-dimension features into low-dimension features which have a better classification performance. Finally, the SVM (support vector machine) was employed to <a href="app:ds:distinguish" target="_self">distinguish</a> different <a href="app:ds:fault" target="_self">fault</a> features. Experiment results of hydraulic pump feature extraction show that the proposed method can exactly classify different fault type of hydraulic pump and this method has a significant advantage <a href="app:ds:compare" target="_self">compare</a>d with other feature extraction means mentioned in this paper.</p><p> </p>


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1358
Author(s):  
Airam Curtidor ◽  
Tetyana Baydyk ◽  
Ernst Kussul

This article describes and analyzes the new feature extraction technique, Random Local Descriptor (RLD), that is used for the Permutation Coding Neural Classifier (PCNC), and compares it with Local Binary Pattern (LBP-based) feature extraction. The paper presents a model of face feature detection using local descriptors, and describes an improvement on the PCNC for the recognition of plane rotated and small displaced face images, as applied to three databases, i.e., ORL, FRAV3D and FEI. All databases are described along with the recognition results that were obtained. We also include a comparison of our classifier with the Support Vector Machine (SVM) and Iterative Closest Point (ICP). The ORL database was selected to compare our RLDs with LBP-based algorithms. The PCNC with the RLDs demonstrated the best recognition rate, i.e., 97.49%, in comparison with 90.49% for LBPs. For the FEI image database, we obtained the best recognition rate, i.e., 93.57%, in comparison with 66.74% for LBPs. Using the RLDs and rotating the original images for FRAV3D, we improved the recognition rate by decreasing by approximately twice the number of errors. In addition, we analyzed the influence of different RLD parameters on the quality of facial recognition.


Author(s):  
B. Samanta

Applications of genetic programming (GP) include many areas. However applications of GP in the area of machine condition monitoring and diagnostics is very recent and yet to be fully exploited. In this paper, a study is presented to show the performance of machine fault detection using GP. The time domain vibration signals of a rotating machine with normal and defective gears are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to GP for two class (normal or fault) recognition. The number of features and the features are automatically selected in GP maximizing the classification success. The results of fault detection are compared with genetic algorithm (GA) based artificial neural network (ANN)- termed here as GA-ANN. The number of hidden nodes in the ANN and the selection of input features are optimized using GAs. Two different normalization schemes for the features have been used. For each trial, the GP and GA-ANN are trained with a subset of the experimental data for known machine conditions. The trained GP and GA-ANN are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a gearbox. The results compare the effectiveness of both types of classifiers with GP and GA based selection of features.


2020 ◽  
Author(s):  
Hoda Heidari ◽  
Zahra Einalou ◽  
Mehrdad Dadgostar ◽  
Hamidreza Hosseinzadeh

Abstract Most of the studies in the field of Brain-Computer Interface (BCI) based on electroencephalography have a wide range of applications. Extracting Steady State Visual Evoked Potential (SSVEP) is regarded as one of the most useful tools in BCI systems. In this study, different methods such as feature extraction with different spectral methods (Shannon entropy, skewness, kurtosis, mean, variance) (bank of filters, narrow-bank IIR filters, and wavelet transform magnitude), feature selection performed by various methods (decision tree, principle component analysis (PCA), t-test, Wilcoxon, Receiver operating characteristic (ROC)), and classification step applying k nearest neighbor (k-NN), perceptron, support vector machines (SVM), Bayesian, multiple layer perceptron (MLP) were compared from the whole stream of signal processing. Through combining such methods, the effective overview of the study indicated the accuracy of classical methods. In addition, the present study relied on a rather new feature selection described by decision tree and PCA, which is used for the BCI-SSVEP systems. Finally, the obtained accuracies were calculated based on the four recorded frequencies representing four directions including right, left, up, and down.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3105 ◽  
Author(s):  
Cong Dai Nguyen ◽  
Alexander Prosvirin ◽  
Jong-Myon Kim

The vibration signals of gearbox gear fault signatures are informative components that can be used for gearbox fault diagnosis and early fault detection. However, the vibration signals are normally non-linear and non-stationary, and they contain background noise caused by data acquisition systems and the interference of other machine elements. Especially in conditions with varying rotational speeds, the informative components are blended with complex, unwanted components inside the vibration signal. Thus, to use the informative components from a vibration signal for gearbox fault diagnosis, the noise needs to be properly distilled from the informational signal as much as possible before analysis. This paper proposes a novel gearbox fault diagnosis method based on an adaptive noise reducer–based Gaussian reference signal (ANR-GRS) technique that can significantly reduce noise and improve classification from a one-against-one, multiclass support vector machine (OAOMCSVM) for the fault types of a gearbox. The ANR-GRS processes the shaft rotation speed to access and remove noise components in the narrowbands between two consecutive sideband frequencies along the frequency spectrum of a vibration signal, enabling the removal of enormous noise components with minimal distortion to the informative signal. The optimal output signal from the ANR-GRS is then extracted into many signal feature vectors to generate a qualified classification dataset. Finally, the OAOMCSVM classifies the health states of an experimental gearbox using the dataset of extracted features. The signal processing and classification paths are generated using the experimental testbed. The results indicate that the proposed method is reliable for fault diagnosis in a varying rotational speed gearbox system.


2007 ◽  
Vol 17 (06) ◽  
pp. 479-487 ◽  
Author(s):  
HUI-CHENG LIAN ◽  
BAO-LIANG LU

In this paper, we present a novel method for multi-view gender classification considering both shape and texture information to represent facial images. The face area is divided into small regions from which local binary pattern (LBP) histograms are extracted and concatenated into a single vector efficiently representing a facial image. Following the idea of local binary pattern, we propose a new feature extraction approach called multi-resolution LBP, which can retain both fine and coarse local micro-patterns and spatial information of facial images. The classification tasks in this work are performed by support vector machines (SVMs). The experiments clearly show the superiority of the proposed method over both support gray faces and support Gabor faces on the CAS-PEAL face database. A higher correct classification rate of 96.56% and a higher cross validation average accuracy of 95.78% have been obtained. In addition, the simplicity of the proposed method leads to very fast feature extraction, and the regional histograms and fine-to-coarse description of facial images allow for multi-view gender classification.


Sign in / Sign up

Export Citation Format

Share Document