scholarly journals Profile of Geohelminth Eggs, Cysts, and Oocysts of Protozoans Contaminating the Soils of Ten Primary Schools in Dschang, West Cameroon

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Vanessa Rosine Nkouayep ◽  
Blandine Ngatou Tchakounté ◽  
Josué Wabo Poné

Helminthiasis and protozoans infections have been recognized as an important public health problem. The aim of the present study was to screen soil samples collected from 10 primary schools in the city of Dschang for the presence of soil-transmitted helminth eggs, cysts, and oocysts of protozoans. A total of 400 soil samples were collected around latrines, at playgrounds, and behind classrooms in each school. These samples were examined using the sucrose flotation method. From the result obtained, an overall contamination rate of 7.75% was observed. Five genera of nematodes (Ascaris, Trichuris, Capillaria, Cooperia, and hookworms) were identified, while neither cysts nor oocysts of protozoans were detected. The contamination rate and the number of species found were significantly different in wet season as compared to the dry season. During the rainy season, this rate was 12.5% with all the parasitic stages identified, while, in the dry season, the soil contamination rate was 3% with the presence of only two genera (Ascaris and Trichuris). This suggests that parasite infection may occur mainly in rainy season rather than in the dry season. The most common eggs were those of Ascaris with 2% and 5% contamination rates in the dry and rainy seasons, respectively. Also, the soils around latrines were more contaminated (11.9%) as compared to those collected behind classrooms (7.5%) and those at playground (2.5%). It was concluded that the pupils of these schools may have played a major role in the contamination of their environment. Thus, sanitary education, enforcement of basic rules of hygiene, and deworming remain a necessity in the entire population of the study area in general and in the schools in particular in order to prevent helminth infections and to ensure effective environmental health.

Author(s):  
Edema Enogiomwan Imalele ◽  
Effanga Emmanuel Offiong ◽  
Usang Anok Ukam ◽  
Aramushu Willington Urimaneh ◽  
Henshaw Victoria Utibe

Aims: The present study investigated the prevalence and intensity of soil-transmitted helminth contamination in dumpsite and farmland soils in Calabar, Cross River State, Nigeria. Methodology: Soil samples were randomly collected from selected dumpsites and farmlands from July to December 2019. 200 soil samples (100 samples each from dumpsites and farmland) were collected. Soil samples were analysed using Zinc sulphate flotation technique whereas soil nematode extraction for hookworm and Strongyloides larvae was carried out using the modified Baermann technique. Results: Of the 200 soil samples examined, 131 (65.5%) were positive for ova/larvae of one or more parasites. Dumpsite soils were highly contaminated with ova/larvae of soil-transmitted helminths than farmland soils with a prevalence of 79% (n=79) and 52% (n=52) respectively (P=.02). Farmlands had the highest mean intensity (6.75±1.88) of contamination with ova/larvae of soil-transmitted helminths compared to dumpsite soils (1.68±0.14). Ascaris lumbricoides recorded the highest occurrence (35.5%) (P=.003) in soil samples examined. A. lumbricoides (40%) and Trichuris trichiura (6%) contamination was higher in dumpsite soils, while Strongyloides stercoralis larvae (34%) and hookworm (10%) contamination was higher in farmland soils. Dumpsite soils recorded the highest number of parasites (84%) in the wet season, while farmland soils recorded the highest number of parasites (92%) in the dry season (P=.11). Generally, parasitic ova/larvae were more prevalent in the dry season (91%) than in the wet season (73%) (P=.33). S. stercoralis (33%) was more prevalent in the wet season followed while A. lumbricoides (43%) recorded highest occurrence in the dry season. Conclusion: This study revealed the potential health risk of contracting soil-transmitted helminth parasites in soils around farmlands and dumpsites in Calabar, Nigeria. It is therefore important that a combination of sanitation and health education be put in place for effective control of soil-transmitted helminths.


Author(s):  
Adekunle Titus Adediji ◽  
Joseph Babatunde Dada ◽  
Moses Oludare Ajewole

In this study, four years in-situ measurements of atmospheric parameters (pressure, temperature and relative humidity) were carried out. The measurement was by placing an automatic weather station at five different heights: ground surface, 50, 100, 150 and 200 m respectively on a 220 m Nigeria Television Authority TV tower in Akure, South Western Nigeria. The four years Data collected (January 2007 to December 2009 and January to December 2011) were used to compute radio refractivity and its gradient. The local effect of a location/ region cannot but looked into when designing effective radio link, hence the diurnal, seasonal and annual variations of the radio refractivity gradient were studied. Results showed that refractivity gradient steadily increases inthe hour of 8:30 and 9:30 to 18:00 during dry season throughout the years investigated, and decreases two hours in the rainy season than the dry season. The record shows that at 50 m altitude, the maximum and minimum values are 158 N-unit/km around 14:30 and - 286 N-unit/km around 13:30 to 14:00 hrs, LT during the dry and rainy season respectively. Seasonally, refractivity gradient is steeper with greater variability in the dry season months than in the wet season months.


2010 ◽  
Vol 70 (1) ◽  
pp. 19-24 ◽  
Author(s):  
JP. Lemos-Filho ◽  
CFA. Barros ◽  
GPM. Dantas ◽  
LG. Dias ◽  
RS. Mendes

Canopy cover has significant effects on the understory environment, including upon light availability for seedling growth. The aim of the present study was to verify spatial heterogeneity and seasonal changes in the canopy cover of a dense Cerrado area, and their relationship to understory photosynthetic active radiation availability. Leaf area index (LAI) values in the rainy season varied from 0.9 to 4.83, with 40% of the values ranging from 4.0 to 5.0, while in the dry season LAI varied from 0.74 to 3.3, with 53% of the values oscilating from 2.0 to 3.0. Understory light (Qi ) and the Lambert-Beer ratio (Qi/Qo) were taken around noon on sunny days (between 11:00 AM and 1:00 PM). They were also statistically different (p < 0.01) between the dry and wet seasons, with 72% of sampled points in the rainy season presenting photosynthetic photon flux density (PPFD) values lower than 250 μmol.m-2/s around noon, whereas in the dry season, most PPFD values varied from 1500 to 1817 μmol.m-2/s , thus providing high light availability for understory plants. In most of the studied sites, understory plants did not even receive enough light for 50% of their photosynthetic capacity in the wet season. In contrast during the dry season, Qi/Qo values of 0.8 to 1.0 were observed in more than 50% of the points, thereby allowing for photosynthetic light saturation. Thus, light variability around noon was higher during the dry season than in the wet season, its heterogeneity being related to spatial complexity in the canopy cover.


Author(s):  
Waldilene Correa ◽  
Sueli Pereira ◽  
Joaquim Ernesto Bernardes ◽  
Paulo Ricardo Pereira

Groundwater-Surface water interactions in alluvial plains facing morphological features are the subject of the study. Considered transitions zones, alluvial plains have different morphological features interfering with groundwater flow and hydrochemistry. The alluvial plain of Mogi Guaçu river (southeastern Brazil) presented topography-controlled groundwater flow, nevertheless, natural levees, wet fields, oxbow lakes, and abandoned meanders can control local flow and interfere in discharges points of the main river. Two sampling water campaigns were done in the dry and wet season for physicochemical and natural isotopes analysis, collecting in total 44 groundwaters samples from monitoring wells and eight water samples from the river, creek, and lake. The groundwaters in wet fields and terraces, and surface waters from creek and lake presented low mineralization (EC from 8 to 37 μS.cm), pH acidic (4.98 to 5.8), and essentially Ca and Na-HCO composition. River waters samples presented pH between 5.92 e 7.69 (acidic in the rainy season and basic in the dry season), and EC from 24.2 and 181.1 μS/cm (lower values in the wet season), Na-HCO and Na-HCO-SO (dry season) and Ca-HCO and Na-HCO (rainy season) compositions. In dry season groundwaters composition showed evolution from sodium mixed (SO – HCO) to bicarbonate waters and higher mineralization; in wet season waters varied from Ca to Na-HCO composition and low mineralization, denoting dilution due to rainwater infiltration. Closer to the river margins, in abandoned meanders and oxbows, the groundwaters have increased values of EC and major ions indicating GW-SW mixtures, and effluent-influent changes (descendent and ascendent flux) in wet and dry seasons, respectively. Natural isotopes in groundwaters imply meteoric origin, without evaporation during recharge and high d-excess can be influenced by continental air masses and Amazonia Basin low-level jet. Shallow water table, permeable silty-sand material of vadose zone, flat terrain, and pristine conditions can contribute to direct infiltration of rainwaters, recharging the shallow aquifer.


2018 ◽  
Vol 13 (3) ◽  
pp. 360-373
Author(s):  
FATIMAH OYENIKE OJO ◽  
TUKURA BITRUS WOKHE ◽  
MADU PASCAL CHIMA

Seasonal concentrations of eight total and bioavailable heavy metals (Cr, Cu, Cd, Zn, Mn, Ni, Pb an Fe), along with some physico chemical properties of soil in vegetable farms around the rock quarry in Durumi, Abuja was assessed to know the level of heavy metal pollution of the soil. Control and actual soil samples were collected from depths of 0.0 -5.0cm and 5.0 - 10.0cm during dry and rainy seasons. Heavy metal concentrations varied inconsistently in samples and control. Dry season levels of Zn(5.20mg/kg), Mn(19.44mg/kg), Ni(1.69mg/kg) and Pb(4.56mg/kg) and rainy season levels of Zn (0.26mg/kg), Pb(22.53mg/kg) at soil depth of 0.0 - 5.0cm, and dry season levels of Zn(1.19mgkg) and Ni(1.62mg/kg) along with rainy season levels of Cr (0.44mg/kg), Cd (0.06mg/kg), Zn(0.09mg/kg) and Fe(6.74mg/kg) at soil depth of 5.0 -10.0cm were all higher in samples than controls. However, seasonal mean total heavy metals in the soil samples were lower than the Maximum Allowable Limits (mg/Kg) for World Health Organization (WHO) and Food and Agriculture Organization (FAO). During dry season, heavy metals that indicated anthropogenic content, had anthropogenic levels that ranged in the order: Cd(16.67%) < Cu(54.17%)


Author(s):  
P. Nwaerema ◽  
Ojeh N. Vincent ◽  
C. Amadou ◽  
Atuma, I. Morrison

The study examined Land Surface Temperature (LST) and Land Surface Emissivity (LSE) in a tropical coastal city of Port Harcourt and its environs. Satellite remote sensing of multiple-wavelength origin was employed to derive data from the Landsat Enhance Thematic Mapper (ETM+). Statistical mean and range were used to show pattern of LST and LSE. The study established the relationship and characteristics of land use land cover, built-up area and influence of population on land surfaces. With population of over 3,095,342 persons occupying surface area of approximately 458,28 Km2, rapid vegetal and water body lost have put the city area under pressure of 4.7°C heat bias at the interval of 15 years. From rural fringes to the city center, LST varies with 9.3°C in wet season and 4.8°C in the dry season. During the dry season, LSE is severe in the southern part of the city contributed by water bodies, more vegetal cover and urban pavement materials. Emissivity in the wet season varied with 0.0136 and 0.0006 during the dry season but differs with 0.0165 between the two seasons. One critical finding is that LSE decreases from the rural fringes to the city center and LST increases from the rural fringes to the city center. It is recommended that urban greening at the city center should be practiced and the rural fringes should be explored by decongesting activities at the city center to the outskirts in order to ameliorate the effects of urban heat bias without further delay.


2016 ◽  
Vol 6 (1) ◽  
pp. 85
Author(s):  
Eneojo Godwin Ameh ◽  
Mofoloronsho Samuel Kolawole ◽  
Sunday Ojochogwu Idakwo ◽  
Caroline Ojone Ameh ◽  
Ebo GabrielImeokparia

Soil samples were collected randomly but uniformly distributed around Itakpe iron-ore mines in both dry and wet seasons. Surface soils were collected from 0cm to 10cm using stainless steel augers and located using Global Positioning System (GPS). Soil samples were air-dried, sieved through 500um mesh and 1.0g digested, evaporated and analysed using Atomic Absorption Spectrometer (AAS).Five (5) geo-environmental indices were used to quantitatively evaluate the degree of soil contamination due to iron ore mining. The anthropogenic factor (AF) for both seasons revealed that all heavy metals have greater than 50% AF except for Cd in the dry season. The geo accumulation index (Igeo) for both seasons showed background concentration to unpolluted for Cu and Zn while Fe, Ni, Cdand Pb recorded moderately to very highly polluted. The pollution index (Eri), showed tiny hazard level for all the heavy metals in dry season and in wet season, Cd and Ni recorded strong hazard level while tiny hazard level were observed for Cu and Pb. The ecological pollution index for the area is strong (RI=323.25). Dry and wet season enrichment factor (EF) revealed background concentration for all the heavy metals except Fe with EF> 40 (extremely high enrichment). While contamination factor (CF) was very high for Fe in both seasons, Cu and Ni recorded considerable to very high contamination in dry season. The wet season also revealed considerable contamination for Ni and Cd; moderate to considerable contamination for Cu, Zn and Pb. The sites in both seasons have experienced various degrees of deterioration but more significant in wet season. Based on these indices, the soils around Itakpe iron-ore area has suffered significant degrees of contaminations with respect to Fe, Ni, Cd and Pb.


2014 ◽  
Vol 48 (4) ◽  
pp. 333-338 ◽  
Author(s):  
G. Kopij

Abstract Studies were conducted by means of the Line Transect Method in late rainy season (March), in the middle of dry season (July) and at beginning of rainy season (November).Th e total length of all transects was c. 11 km. In total, 70 resident and 13 nonresidentspecies were recorded. Th e number of species in dry season was significantly lower than in rainy season (x2-test: 14.1; p < 0.01). Th e highly significant seasonal differences in abundance were recorded for the following species: Streptopelia senegalensis, Streptopelia capicola, Uraeginthus angolensis, Cisticola juncidis, Upupa africana, Cynniris mariquensis, and Numida meleagris. In overall, five species have been classified as dominants: Streptopelia senegalensis, Streptopelia capicola, Uraeginthus angolensis, Plocepasser mahali and Cypsiurus parvus. They comprised together 43.9 %. Significant variations in the dominance structure between the wet and dry season have been evidenced. Granivores were much more numerous in the dry than in the wet season, while for the insectivores the reverse was true. Although Sorensen Coefficient was much the same between all three seasons, the Shannon’s Diversity Index was lower in July than in March and November.


1970 ◽  
Vol 44 (1) ◽  
pp. 87-108 ◽  
Author(s):  
AS Chamon ◽  
MN Mondol ◽  
B Faiz ◽  
MH Rahman ◽  
SF Elahi

The main focus of the study is Tejgaon industrial area which is located within the Dhaka City Corporation and about 5 km north of the city centre. The industries around the study area like battery, chemical manufacturing, electrical and electronic, metal finishing, mining, paint and dye, textiles, pharmaceuticals, pesticides, etc, discharge heavy metals like Ni with their effluents and wastes. At Tejgaon soil the minimum pH value was 5.3 and the maximum 7.6 (at 26°C). High buffering capacity resulting from high soil organic matter content (4.87-11.55%) probably influenced soil pH. Electrical conductivity (EC) (25-551 μS/cm) and organic matter (OM) (4.87-11.55%) contents were also influenced by the industrial wastes and effluents of the factories. In the wet season, the average Ni concentration in different soil fractions was 1.69, 4.16, 13.21 and 93.12 mg kg-1 in water-soluble, NH4OAc extractable, DTPAextractable and total fractions respectively. Comparing wet season and dry season sampling data, total Ni concentrations in different locations were higher in the dry season and the mean concentration of total Ni was 223.89 mg kg-1, which was more than 4 times higher than the tolerable limit. Concentrations of total Ni in different locations during wet season were found above the natural background level with few exceptions. Ni concentration in the group of tolerable level was 21% (>022-=50 mg kg-1) and 75% (=50 mg kg-1) soil samples were found in the group of in excess of tolerable level during wet season. During dry season, 11% of Ni (=50 mg kg-1) samples were in the normal range and 89% (>50 mg kg-1) soil samples were found in the group of in excess of tolerable level. Ni concentration during dry season samples in different extraction i.e in NH4OAc extractable, DTPA extractable and in total fraction was found to decrease with distance away from the disposal point source due to dilution of the effluent and water. The decreasing tendency with distance indicates the accumulation of metals by the industrial operations. Key words: Speciation,Tejgaon soil, Industrial area, Nickel.     doi: 10.3329/bjsir.v44i1.2717 Bangladesh J. Sci. Ind. Res. 44(1), 87-108, 2009


Author(s):  
Daniel Moran-Zuloaga ◽  
Wilson Merchan-Merchan ◽  
Emilio Rodríguez-Caballero ◽  
Philip Hernick ◽  
Julio Cáceres ◽  
...  

AbstractThe focus of this study is the assessment of total suspended particles (TSP) and particulate matter (PM) with various aerodynamic diameters in ambient air in Guayaquil, a city in Ecuador that features a tropical climate. The urban annual mean concentrations of TSP (Total Suspended Particles), and particle matter (PM) with various aerodynamic diameters such as: PM10, PM2.5 and PM1 are 31 ± 14 µg m−3, 21 ± 9 µg m−3, 7 ± 2 µg m−3 and 1 ± 1 µg m−3, respectively. Air mass studies reveal that the city receives a clean Southern Ocean breeze. Backward trajectory analysis show differences between wet and dry seasons. During the dry season, most winds come from the south and southwest, while air masses from the peri urban may contribute as pollutant sources during the wet season. Although mean values of PM10 and PM2.5 were below dangerous levels, our year-round continuous monitoring study reveals that maximum values often surpassed those permissible limits allowed by the Ecuadorian norms. A cluster analysis shows four main paths in which west and southwest clusters account for more than 93% of the pollution. Total vertical column of NO2 shows the pollution footprint is strongest during the dry season, as opposed to the wet season. A microscopic morphological characterization of ambient particles within the city during the wet and the dry season reveals coarse mode particles with irregular and rounded shapes. Particle analysis reveals that samples are composed of urban dust, anthropogenic and organic debris during the dry season while mainly urban dust during the wet season.


Sign in / Sign up

Export Citation Format

Share Document