scholarly journals Spatial and temporal variability of canopy cover and understory light in a Cerrado of Southern Brazil

2010 ◽  
Vol 70 (1) ◽  
pp. 19-24 ◽  
Author(s):  
JP. Lemos-Filho ◽  
CFA. Barros ◽  
GPM. Dantas ◽  
LG. Dias ◽  
RS. Mendes

Canopy cover has significant effects on the understory environment, including upon light availability for seedling growth. The aim of the present study was to verify spatial heterogeneity and seasonal changes in the canopy cover of a dense Cerrado area, and their relationship to understory photosynthetic active radiation availability. Leaf area index (LAI) values in the rainy season varied from 0.9 to 4.83, with 40% of the values ranging from 4.0 to 5.0, while in the dry season LAI varied from 0.74 to 3.3, with 53% of the values oscilating from 2.0 to 3.0. Understory light (Qi ) and the Lambert-Beer ratio (Qi/Qo) were taken around noon on sunny days (between 11:00 AM and 1:00 PM). They were also statistically different (p < 0.01) between the dry and wet seasons, with 72% of sampled points in the rainy season presenting photosynthetic photon flux density (PPFD) values lower than 250 μmol.m-2/s around noon, whereas in the dry season, most PPFD values varied from 1500 to 1817 μmol.m-2/s , thus providing high light availability for understory plants. In most of the studied sites, understory plants did not even receive enough light for 50% of their photosynthetic capacity in the wet season. In contrast during the dry season, Qi/Qo values of 0.8 to 1.0 were observed in more than 50% of the points, thereby allowing for photosynthetic light saturation. Thus, light variability around noon was higher during the dry season than in the wet season, its heterogeneity being related to spatial complexity in the canopy cover.

2017 ◽  
pp. 63 ◽  
Author(s):  
Alfredo Ramos-Vázquez ◽  
Víctor L. Barradas

Precipitation seasonality and substratum in Pedregal de San Angel can play a key role on plant water status. Therefore, stomatal conductance (g), water potential (Ψ h), photosynthetically photon flux density (Q), air temperature (Ta) and leaf-air vapour pressure difference (VPD), were measured on leaves of Buddleia cordata H.B.K., because its perennial character and its dominance in the Pedregal. These measurements were carried out during the wet and dry seasons in the Pedregal which is a plant community developing in a lava substratum. The highest values of stomatal conductance were registered in the wet season (330 mmol m-2 s-1), however during the dry season, stomatal conductance was reduced by 54%. Upper limit enveloping curve technique and multiple regression analysis were performed to the data in order to study how g responded to the microenvironment and (Ψ h). Results clearly showed that there was a significant effect of Q, Ta and VPD on g and stomata were more sensitive on humid season than during dry season. (Ψ h), effect was not significant during the humid season, nor the dry season, but annually. Results from these kind of analysis may be very useful during the formulation of mathematics models to simulate or predict stomatal conductance.


Author(s):  
Benjamin I Cook ◽  
Kimberly Slinski ◽  
Christa Peters-Lidard ◽  
Amy McNally ◽  
Kristi Arsenault ◽  
...  

AbstractTerrestrial water storage (TWS) provides important information on terrestrial hydroclimate and may have value for seasonal forecasting because of its strong persistence. We use the NASA Hydrological Forecast and Analysis System (NHyFAS) to investigate TWS forecast skill over Africa and assess its value for predicting vegetation activity from satellite estimates of leaf area index (LAI). Forecast skill is high over East and Southern Africa, extending up to 3–6 months in some cases, with more modest skill over West Africa. Highest skill generally occurs during the dry season or beginning of the wet season when TWS anomalies from the previous wet season are most likely to carry forward in time. In East Africa, this occurs prior to and during the transition into the spring “Long Rains” from January–March, while in Southern Africa this period of highest skill starts at the beginning of the dry season in April and extends through to the start of the wet season in October. TWS is highly and positively correlated with LAI, and a logistic regression model shows high cross-validation skill in predicting above or below normal LAI using TWS. Combining the LAI regression model with the NHyFAS forecasts, 1-month lead LAI predictions have high accuracy over East and Southern Africa, with reduced but significant skill at 3-month leads over smaller sub-regions. This highlights the potential value of TWS as an additional source of information for seasonal forecasts over Africa, with direct applications to some of the most vulnerable agricultural regions on the continent.


1988 ◽  
Vol 24 (2) ◽  
pp. 183-189 ◽  
Author(s):  
D. P. Singh ◽  
P. K. Singh

SUMMARYThe effects of phosphorus fertilizer and the insecticide carbofuran on the growth and N2-fixation of Azolla pinnata and on the growth, grain yield and nitrogen uptake of intercropped rice were examined in a wet and a dry season. Treatment with phosphorus or carbofuran increased the biomass of Azolla and the amount of nitrogen fixed (nitrogen yield) in both seasons, but the response was much better in the dry season. Azolla inoculation at 1.0 t ha−1 resulted in a greater bio mass and nitrogen yield than inoculation at 0.5 t ha−1. In the dry season, a combination of phosphorus and carbofuran enhanced the growth and N2-fixation of Azolla more than either treatment alone. Carbofuran treatment slowed the rate of decomposition of Azolla, particularly in the dry season. The plant height, leaf area index and dry matter production of rice at flowering time were increased in the plots treated with phosphorus or carbofuran in the wet season and these treatments increased rice grain yield and nitrogen uptake in both the wet and dry seasons.


Author(s):  
Adekunle Titus Adediji ◽  
Joseph Babatunde Dada ◽  
Moses Oludare Ajewole

In this study, four years in-situ measurements of atmospheric parameters (pressure, temperature and relative humidity) were carried out. The measurement was by placing an automatic weather station at five different heights: ground surface, 50, 100, 150 and 200 m respectively on a 220 m Nigeria Television Authority TV tower in Akure, South Western Nigeria. The four years Data collected (January 2007 to December 2009 and January to December 2011) were used to compute radio refractivity and its gradient. The local effect of a location/ region cannot but looked into when designing effective radio link, hence the diurnal, seasonal and annual variations of the radio refractivity gradient were studied. Results showed that refractivity gradient steadily increases inthe hour of 8:30 and 9:30 to 18:00 during dry season throughout the years investigated, and decreases two hours in the rainy season than the dry season. The record shows that at 50 m altitude, the maximum and minimum values are 158 N-unit/km around 14:30 and - 286 N-unit/km around 13:30 to 14:00 hrs, LT during the dry and rainy season respectively. Seasonally, refractivity gradient is steeper with greater variability in the dry season months than in the wet season months.


2019 ◽  
Vol 11 (7) ◽  
pp. 829 ◽  
Author(s):  
Timothy Dube ◽  
Santa Pandit ◽  
Cletah Shoko ◽  
Abel Ramoelo ◽  
Dominic Mazvimavi ◽  
...  

Knowledge on rangeland condition, productivity patterns and possible thresholds of potential concern, as well as the escalation of risks in the face of climate change and variability over savanna grasslands is essential for wildlife/livestock management purposes. The estimation of leaf area index (LAI) in tropical savanna ecosystems is therefore fundamental for the proper planning and management of this natural capital. In this study, we assess the spatio-temporal seasonal LAI dynamics (dry and wet seasons) as a proxy for rangeland condition and productivity in the Kruger National Park (KNP), South Africa. The 30 m Landsat 8 Operational Land Imager (OLI) spectral bands, derived vegetation indices and a non-parametric approach (i.e., random forest, RF) were used to assess dry and wet season LAI condition and variability in the KNP. The results showed that RF optimization enhanced the model performance in estimating LAI. Moderately high accuracies were observed for the dry season (R2 of 0.63–0.72 and average RMSE of 0.60 m2/m2) and wet season (0.62–0.63 and 0.79 m2/m2). Derived thematic maps demonstrated that the park had high LAI estimates during the wet season when compared to the dry season. On average, LAI estimates ranged between 3 and 7 m2/m2 during the wet season, whereas for the dry season most parts of the park had LAI estimates ranging between 0.00 and 3.5 m2/m2. The findings indicate that Kruger National Park had high levels of productivity during the wet season monitoring period. Overall, this work shows the unique potential of Landsat 8-derived metrics in assessing LAI as a proxy for tropical savanna rangelands productivity. The result is relevant for wildlife management and habitat assessment and monitoring.


2017 ◽  
Vol 57 (5) ◽  
pp. 903 ◽  
Author(s):  
W. L. Silva ◽  
J. P. R. Costa ◽  
G. P. Caputti ◽  
A. L. S. Valente ◽  
D. Tsuzukibashi ◽  
...  

This study compared the effect of residual leaf area index (rLAI) on the spatial distribution of morphological components of Tifton 85 (Cynodon spp.) pastures and the ingestive behaviour of grazing sheep. Also, it was investigated whether any specific correlation could be found between pasture structural characteristics and sheep ingestive behaviour. Four rLAI treatments (0.8; 1.4; 2.0 and 2.6) with four replications were evaluated per period. Sheep grazed under rotational stocking management and they grazed for 4 days in each pasture while pasture regrowth period was determined by the 95% light interception requirement. Pasture structure was evaluated using inclined point-quadrat, LAI estimates, light interception and leaf : stem ratio. The 2.6 rLAI yielded the highest proportion of dead material in the lower canopy. In the post-grazing period the proportion of leaves increased with increasing rLAI, especially on the canopy surface during the rainy season. In the pre-grazing average pasture height ranged between 19 and 26 cm with dead material and stem observed up to the canopy surface in the dry season. The animals grazed longer on the last day (89.72%) compared with the first day (80.25%) in the dry season. However, they spent less time (11.45%) ruminating in the dry season compared with the rainy season (15.38%), regardless of the grazing day. Grazing time decreased and rumination time increased as rLAI increased. Sheep grazing time correlated negatively with pasture height, before and after grazing. The sheep tend to graze longer on Tifton 85 pastures when rLAI was lower and forage supply was possibly less as on the last grazing day and in the dry season.


2001 ◽  
Vol 15 (6) ◽  
pp. 798-803 ◽  
Author(s):  
H. MURAOKA ◽  
H. HIROTA ◽  
J. MATSUMOTO ◽  
S. NISHIMURA ◽  
Y. TANG ◽  
...  

1989 ◽  
Vol 5 (1) ◽  
pp. 65-79 ◽  
Author(s):  
David W. Lee

ABSTRACTThe canopy dynamics and light climates within a 20 by 60 m quadrat were studied in a disturbed moist deciduous forest near Bombay, India. A map was drawn of individual trees within the quadrat, the taxa were identified, and their phenology was followed from November 1984 to July 1985. The quadrat contained 14 species, the most common being Tectona grandis, Terminalia tomentosa, Butea monosperma, Mitragyne parviflora and Albizia procera. Some individuals were in leaf at all times, more so at the moister east end of the quadrat. In November at the end of the rainy season, light measurements documented percentages of total daily photosynthetic photon fluence (PPF) at 10.0% of full sunlight; 44% of this flux was due to sun-flecks whose duration was approximately 17% of the daytime hours. Values for six sites were similar to mid-day measurements along a 40 m transect, and consistent with the 94% canopy cover of the sites, photographed with a fish-eye lens. The March dry season measurements revealed a more intense radiation environment (54% of solar PPF), and 59% of the photosynthetic photon flux density at mid-day along the transect. Canopy openings were increased to a mean of 59.4%. Light in the understorey in November was spectrally altered, with typical R:FR ratios of 0.30, compared to March values identical to those of sunlight, at 1.10.


Author(s):  
Waldilene Correa ◽  
Sueli Pereira ◽  
Joaquim Ernesto Bernardes ◽  
Paulo Ricardo Pereira

Groundwater-Surface water interactions in alluvial plains facing morphological features are the subject of the study. Considered transitions zones, alluvial plains have different morphological features interfering with groundwater flow and hydrochemistry. The alluvial plain of Mogi Guaçu river (southeastern Brazil) presented topography-controlled groundwater flow, nevertheless, natural levees, wet fields, oxbow lakes, and abandoned meanders can control local flow and interfere in discharges points of the main river. Two sampling water campaigns were done in the dry and wet season for physicochemical and natural isotopes analysis, collecting in total 44 groundwaters samples from monitoring wells and eight water samples from the river, creek, and lake. The groundwaters in wet fields and terraces, and surface waters from creek and lake presented low mineralization (EC from 8 to 37 μS.cm), pH acidic (4.98 to 5.8), and essentially Ca and Na-HCO composition. River waters samples presented pH between 5.92 e 7.69 (acidic in the rainy season and basic in the dry season), and EC from 24.2 and 181.1 μS/cm (lower values in the wet season), Na-HCO and Na-HCO-SO (dry season) and Ca-HCO and Na-HCO (rainy season) compositions. In dry season groundwaters composition showed evolution from sodium mixed (SO – HCO) to bicarbonate waters and higher mineralization; in wet season waters varied from Ca to Na-HCO composition and low mineralization, denoting dilution due to rainwater infiltration. Closer to the river margins, in abandoned meanders and oxbows, the groundwaters have increased values of EC and major ions indicating GW-SW mixtures, and effluent-influent changes (descendent and ascendent flux) in wet and dry seasons, respectively. Natural isotopes in groundwaters imply meteoric origin, without evaporation during recharge and high d-excess can be influenced by continental air masses and Amazonia Basin low-level jet. Shallow water table, permeable silty-sand material of vadose zone, flat terrain, and pristine conditions can contribute to direct infiltration of rainwaters, recharging the shallow aquifer.


1967 ◽  
Vol 18 (2) ◽  
pp. 259 ◽  
Author(s):  
WR Stern

Evapotranspiration (Et) from irrigated cotton was determined on a sequence of plantings covering a whole year. Averaged over the year, evapotranspiration directly after irrigation (Et1) was greater than the Penman estimate of potential evaporation (E) but less than the evaporation from a standard Australian tank (Etank). The mean annual ratios were 1.2 for Et1/E and 0.9 for Et1/Etank. The rate of evapotranspiration was a function of soil moisture, declining rapidly as the available moisture fell below 60 %. Because of the high variability in the estimates of evapotranspiration it was not possible to evaluate precisely the influence of growth stage on evapotranspiration. Although there was evidence that evapotranspiration varied with the stage of growth, meteorological factors were a dominant influence because of the high watering regime. Overall, a crop planted in the wet season used little more water than a crop planted in the dry season. After the maximum leaf area index (LAI) had been reached, evapotranspiration in the wet season crop declined more rapidly and fell to a lower value than evapotranspiration during the corresponding period in the dry season crop. Water was used more efficiently by the wet season crop than by the dry season crop. The conclusion was reached that in this environment advection of energy persisted for most of the year, and that during periods of rapid height increases, particularly when ground cover was incomplete, crop surface roughness enhanced evapotranspiration. The possible interactions of some of the factors influencing evapotranspiration in a crop in the field are discussed.


Sign in / Sign up

Export Citation Format

Share Document