scholarly journals Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Barnabas M. Msongaleli ◽  
S. D. Tumbo ◽  
N. I. Kihupi ◽  
Filbert B. Rwehumbiza

Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly.

Author(s):  
Dr. K. Rajendram

Due to recent climate changes and variability the frequency of occurrence and intensity of extreme climatic events such as flood, drought, etc. are increasing significantly in Sri Lanka. The main objectives of the study are to analyze the annual and seasonal rainfall variability in the last 147years from 1871-2018 with particular reference to drought and to assess the occurrence of droughts and its intensity and the impacts of drought on agriculture. For this secondary and primary data have been used. The long-term average annual rainfall of Mannar show the decreasing trend (r2= 0.0158), particularly in recent epochs higher negative anomalies of rainfall were found, as a results frequent occurrence of droughts or dry spells have been occurred. The rainfall anomaly results reveal that, out of 147years of the data period about 47years were experienced as drought and its probability is P=0.320. Accordingly, once in four to five years a drought could be possible. However, in the recent epoch of 1991-2018, higher number of droughts occurred than the any other epochs and its epochal probability is higher (P=0.40) than the normal, which indicate the effect of recent climate change.


2021 ◽  
Vol 22 (4) ◽  
pp. 509-517
Author(s):  
ADIKANT PRADHAN ◽  
T. CHANDRAKAR ◽  
S.K. NAG ◽  
A. DIXIT ◽  
S.C. MUKHERJEE

Analysis of long-term rainfall data (1986-2018) of Bastar region revealed decreasing trend in total quantum of annual rainfall with varying frequency and distribution. The quantity of winter and summer rains decreased drastically during 2008-18 as compared to earlier two decades (1986-96 and 1997-2007). SW monsoon rain of 2008-18 was more than past two decades, whereas NE monsoon rain changed much in quantity except during 1997-2007. During 1986-96, the pre-monsoon shower was received in April, but later two decades the shower was received in May, which supports for summer ploughing and dry aerobic seeding. The cropping period almost synchronized between 22-43 standard meteorological week (SMW) reaching 93.11 mm per week as maximum rainfall. As the probability of 20 mm rainfall decreased from 75 to 50%, the crop yield got reduced by 30%. The mid-land rice with a probability of 13.47 to 16.07 mm rain per week supported growth phase during 17-21SMW. Whereas, upland rice maturing in 90-100 days could avoid dry spells, if the rice is managed by conservation furrows at the time of sowing. The summer ploughing is preferred with more than 40 mm rain in single day during March to April for mitigating dry spells. On the other hand, preparatory tillage and sowing were performed together in support of ripening niger and horsegram under probability of 75, 50 and 25% rain through crop planning. Maize and small millets reduced yield  significantly when rainfall reached 75% deficit, whereas 25% deficit rain did not affect the yields.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Conrad Kyei-Mensah ◽  
Rosina Kyerematen ◽  
Samuel Adu-Acheampong

Crop production in the Fanteakwa District is predominantly rainfed, exposing this major livelihood activity to the variability or change in rainfall pattern. The net potential effect of severe changes in rainfall pattern is the disruption in crop production leading to food insecurity, joblessness, and poverty. As a major concern to food production in Ghana, this study seeks to show the relationship between the production of major crops and rainfall distribution pattern in the Worobong Agroecological Area (WAA) relative to food security in the face of climate change. The study analysed the variability in local rainfall data, examining the interseasonal (main and minor) rainfall distribution using the precipitation concentration index (PCI), and determined the pattern, availability of water, and the strength of correlation with crop production in the WAA. Data from the Ghana Meteorological Agency (GMet) spanning a 30-year period and grouped into 3 decades of 10 years each was used. Selected crop data for 1993-2014 was also obtained from the Ministry of Food and Agriculture’s District office and analyzed for trends in crop yield over the period and established relationship between the crop data and the rainfall data. Part of the result revealed that rainfall variability within the major seasons in the 3 groups was lower than the minor seasons. It further showed that yields of three crops have declined over the period. Among the strategies to sustain crop production is to make the findings serve as useful reference to inform discussions and policy on adaptive agricultural production methodologies for the area in the face of changing climate.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 423
Author(s):  
Igor G. Loskutov ◽  
Liubov Yu. Novikova ◽  
Galina V. Belskaya ◽  
Elena V. Blinova

Climate change has become a significant factor in crop production in the 21st century for many countries. To turn losses into profit, adaptation measures are needed, which are based on the analysis and forecast of economically valuable characteristics of crops. The field trial data were analyzed for 764 oat accessions from the global germplasm collection by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) in 2001–2019 and the cultivar ‘Gorizont’ in 1990–2019 in Yekaterinino Experiment Station of VIR (Tambov Province, Russia, 52°59′ N, 40°50′ E). A progressive shortening of the growing season and a yield increase were observed during the study both in the mean values for the tested accessions and in the cv. ‘Gorizont’. Grain yield variability of cv. ‘Gorizont’ across the years was also associated with 1000 grain weight variations. The models predict a further reduction in the growing season by 2.4 days/10 years, mainly caused by an increase in temperatures above 15 °C, and an increase in yield by 47.6 g/m2/10 years, mainly caused by an increase in the temperature in May. ANOVA demonstrated that the highest yields in Tambov Province were produced by accessions from Ulyanovsk Province, Ukraine, Moscow Province, Norway, Germany, and Poland.


2015 ◽  
Vol 12 (6) ◽  
pp. 1799-1811 ◽  
Author(s):  
C. Helfter ◽  
C. Campbell ◽  
K. J. Dinsmore ◽  
J. Drewer ◽  
M. Coyle ◽  
...  

Abstract. Land–atmosphere exchange of carbon dioxide (CO2) in peatlands exhibits marked seasonal and inter-annual variability, which subsequently affects the carbon (C) sink strength of catchments across multiple temporal scales. Long-term studies are needed to fully capture the natural variability and therefore identify the key hydrometeorological drivers in the net ecosystem exchange (NEE) of CO2. Since 2002, NEE has been measured continuously by eddy-covariance at Auchencorth Moss, a temperate lowland peatland in central Scotland. Hence this is one of the longest peatland NEE studies to date. For 11 years, the site was a consistent, yet variable, atmospheric CO2 sink ranging from −5.2 to −135.9 g CO2-C m−2 yr−1 (mean of −64.1 ± 33.6 g CO2-C m−2 yr−1). Inter-annual variability in NEE was positively correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating an effect of winter climate on local phenology. Ecosystem respiration (Reco) was enhanced by drought, which also depressed gross primary productivity (GPP). The CO2 uptake rate during the growing season was comparable to three other sites with long-term NEE records; however, the emission rate during the dormant season was significantly higher. To summarise, the NEE of the peatland studied is modulated by two dominant factors: - phenology of the plant community, which is driven by winter air temperature and impacts photosynthetic potential and net CO2 uptake during the growing season (colder winters are linked to lower summer NEE), - water table level, which enhanced soil respiration and decreased GPP during dry spells. Although summer dry spells were sporadic during the study period, the positive effects of the current climatic trend towards milder winters on the site's CO2 sink strength could be offset by changes in precipitation patterns especially during the growing season.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 578 ◽  
Author(s):  
Festo Silungwe ◽  
Frieder Graef ◽  
Sonoko Bellingrath-Kimura ◽  
Siza Tumbo ◽  
Frederick Kahimba ◽  
...  

Establishing food security in sub-Saharan African countries requires a comprehensive and high resolution understanding of the driving factors of crop production. Poor soil and adverse climate conditions are among the major drivers of poor regional crop production. Drought and rainfall variability challenges are not fully being addressed by rainfed producers in semiarid areas. In this study, we analysed the spatiotemporal rainfall variability (STRV) and its effects on pearl millet yield using two seasons of data collected from 38 rain gauge stations scattered randomly in farm plots within a 1500 ha area of semiarid central Tanzania. The STRV effects on pearl millet yield under flat and tied ridge management were analysed. Our results show that seasonal rainfall can vary significantly for neighboring fields at distances of less than 200 m, which impacts yield. The STRV for daily rainfall was found to be more critical than for total seasonal rainfall amounts. Scattering fields can help farmers avoid total harvest loss by obtaining at least some yield from the areas that received adequate rain. The use of tied ridges is recommended to conserve soil moisture and improve yields more than flat cultivation in semiarid areas.


2016 ◽  
Vol 67 (9) ◽  
pp. 921 ◽  
Author(s):  
Michael Robertson ◽  
John Kirkegaard ◽  
Allan Peake ◽  
Zoe Creelman ◽  
Lindsay Bell ◽  
...  

The high-rainfall zone (HRZ) of southern Australia is the arable areas where annual rainfall is between 450 and 800 mm in Western Australia and between 500 and 900 mm in south-eastern Australia, resulting in a growing-season length of 7–10 months. In the last decade, there has been a growing recognition of the potential to increase crop production in the HRZ. We combined (1) a survey of 15 agricultural consultants, each of whom have ~40–50 farmer clients across the HRZ, (2) 28 farm records of crop yields and area for 2000–2010, (3) 86 wheat and 54 canola yield observations from well managed experiments, and (4) long-term simulated crop yields at 13 HRZ locations, to investigate recent trends in crop production, quantify the gap between potential and actual crop yields, and consider the factors thought to limit on-farm crop yields in the HRZ. We found in the past 10 years a trend towards more cropping, particularly in WA, an increased use of canola, and advances in the adaptation of germplasm to HRZ environments using winter and longer-season spring types. Consultants and the farm survey data confirmed that the rate of future expansion of cropping in the HRZ will slow, especially when compared with the rapid changes seen in the 1990s. In Victoria, New South Wales and South Australia the long-term water-limited potential yield in HRZ areas, as measured by experimental yields, consultant estimates and simulations for slow developing spring cultivars of wheat and canola was 5–6 and 2–3 t/ha for a decile 5 season. For Western Australia it was 4–5 and 2–3 t/ha, where yields were less responsive to good seasons than in the other states. The top performing farmers were achieving close to the water-limited potential yield. There are yield advantages of ~2 t/ha for ‘winter’ over ‘spring’ types of both wheat and canola, and there is scope for better adapted germplasm to further raise potential yield in the HRZ. Consultants stated that there is scope for large gains in yield and productivity by encouraging the below-average cropping farmers to adopt the practices and behaviours of the above-average farmers. The scope for improvement between the below- and above-average farmers was 1–3 t/ha for wheat and 0.5–1.5 t/ha for canola in a decile 5 season. They also stated that a lack of up-to-date infrastructure (e.g. farm grain storage) and services is constraining the industry’s ability to adopt new technology. Priorities for future research, development and extension among consultants included: overcoming yield constraints where growing-season rainfall exceeds 350 mm; adaptation of winter and long-season spring types of cereals and canola and management of inputs required to express their superior yield potential; and overcoming barriers to improved planning and timeliness for crop operations and adoption of technology.


2021 ◽  
Vol 117 (9/10) ◽  
Author(s):  
Beatrice Conradie ◽  
Jenifer Piesse ◽  
Johann Strauss

We investigated the effect of heat and moisture stress on total factor productivity in crop farming under experimental farm conditions. Heat stress is the number of days during the growing season during which the maximum temperature exceeds 24.9 °C. Total rainfall is treated as a basic factor of production and periodic moisture stress, or lack thereof, is the number of rainfall days during the growing season. All models controlled for the cumulative soil benefits arising from minimum tillage, which is the main objective of the experiment. Model specification was evaluated using likelihood ratio tests and three are worthy of note. The study site received 329 mm of rainfall on average on 22 rainy days per season during the period 2002–2015, while the maximum temperature typically rose above 24.9 °C on 33 days per growing season. The average efficiency of the plots in the long-term crop rotation experiment increased at 3.4% per year from a base of 60% to the most recent level of 78%. Neither heat nor moisture stress changed significantly over the study period. Heat stress was found to reduce efficiency by 1.75% per hot day and rainfall increased efficiency by 1.45% for each additional rainy day. However, the interaction of heat and moisture stress lowered productivity overall.


2010 ◽  
Vol 49 (4) ◽  
pp. 604-618 ◽  
Author(s):  
Budong Qian ◽  
Xuebin Zhang ◽  
Kai Chen ◽  
Yang Feng ◽  
Ted O’Brien

Abstract A set of agroclimatic indices representing Canadian climatic conditions for field crop production are analyzed for long-term trends during 1895–2007. The indices are categorized for three crop types: cool season, warm season, and overwintering. Results indicate a significant lengthening of the growing season due to a significantly earlier start and a significantly later end of the growing season. Significant positive trends are also observed for effective growing degree-days and crop heat units at most locations across the country. The occurrence of extremely low temperatures has become less frequent during the nongrowing season, implying a more favorable climate for overwinter survival. In addition, the total numbers of cool days, frost days, and killing-frost days within a growing season have a decreasing trend. This means that crops may also be less vulnerable to cold stress and injury during the growing season. Extreme daily precipitation amounts and 10-day precipitation totals during the growing season have been increasing. Significant trends associated with increased availability of water during the growing season are identified by the standardized precipitation index and seasonal water deficits. The benefit of the increased precipitation may have been offset by an upward trend in evaporative demand; however, this would depend on the amount of growth and productivity resulting from increased actual evapotranspiration.


Sign in / Sign up

Export Citation Format

Share Document