scholarly journals Stress-Activated Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Sara Manzanares-Estreder ◽  
Amparo Pascual-Ahuir ◽  
Markus Proft

Sphingolipids are regulators of mitochondria-mediated cell death in higher eukaryotes. Here, we investigate how changes in sphingolipid metabolism and downstream intermediates of sphingosine impinge on mitochondrial function. We found in yeast that within the sphingolipid degradation pathway, the production via Dpl1p and degradation via Hfd1p of hexadecenal are critical for mitochondrial function and cell death. Genetic interventions, which favor hexadecenal accumulation, diminish oxygen consumption rates and increase reactive oxygen species production and mitochondrial fragmentation and vice versa. The location of the hexadecenal-degrading enzyme Hfd1p in punctuate structures all along the mitochondrial network depends on a functional ERMES (endoplasmic reticulum-mitochondria encounter structure) complex, indicating that modulation of hexadecenal levels at specific ER-mitochondria contact sites might be an important trigger of cell death. This is further supported by the finding that externally added hexadecenal or the absence of Hfd1p enhances cell death caused by ectopic expression of the human Bax protein. Finally, the induction of the sphingolipid degradation pathway upon stress is controlled by the Hog1p MAP kinase. Therefore, the stress-regulated modulation of sphingolipid degradation might be a conserved way to induce cell death in eukaryotic organisms.

Author(s):  
Ryuni Kim ◽  
Hyebeen Kim ◽  
Minju Im ◽  
Sun Kyu Park ◽  
Hae Jung Han ◽  
...  

BST204 is a purified ginseng dry extract that has an inhibitory effect on lipopolysaccharide-induced inflammatory responses, but its effect on muscle atrophy is yet to be investigated. In this study, C2C12 myoblasts were induced to differentiate for three days followed by the treatment of dexamethasone (DEX), a corticosteroid drug, with vehicle or BST204 for one day and subjected to immunoblotting, immunocytochemistry, qRT-PCR and biochemical analysis for mitochondrial function. BST204 alleviates the myotube atrophic effect mediated by DEX via the activation of protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling. Through this pathway, BST204 suppresses the expression of muscle-specific E3 ubiquitin ligases contributing to the enhanced myotube formation and enlarged myotube diameter in DEX-treated myotubes. In addition, BST204 treatment significantly decreases the mitochondrial reactive oxygen species production in DEX-treated myotubes. Furthermore, BST204 improves mitochondrial function by upregulating the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) in DEX-induced myotube atrophy. This study provides a mechanistic insight into the effect of BST204 on DEX-induced myotube atrophy, suggesting that BST204 has protective effects against the toxicity of a corticosteroid drug in muscle and promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.


2010 ◽  
Vol 21 (03) ◽  
pp. 204-218 ◽  
Author(s):  
Hope Elizabeth Karnes ◽  
Peter Nicholas Scaletty ◽  
Dianne Durham

Background: Neurons rely exclusively on mitochondrial oxidative phosphorylation to meet cellular energy demands, and disruption of mitochondrial function often precipitates neuronal cell death. Auditory neurons in the chick brain stem (n. magnocellularis [NM]) receive glutamatergic innervation exclusively from ipsilateral eighth nerve afferents. Cochlea removal permanently disrupts afferent support and ultimately triggers apoptotic cell death in 30–50% of ipsilateral, deafferented neurons. Here, we evaluated whether disruption of mitochondrial function occurs during deafferentation-induced neuronal cell death. Purpose: To determine whether mitochondrial dysfunction occurs preferentially within dying NM neurons. Research Design: An experimental study. All birds underwent unilateral cochlea removal. Normally innervated neurons contralateral to surgery served as within-animal controls. Study Sample: Hatchling broiler chickens between 8 and 12 days of age served as subjects. A total of 62 birds were included in the study. Intervention: Cochlea removal was performed to deafferent ipsilateral NM neurons and trigger neuronal cell death. Data Collection and Analysis: Following unilateral cochlea removal, birds were sacrificed 12, 24, 48, or 168 hours later, and brain tissue was harvested. Brainstems were sectioned through NM and evaluated histochemically for oxidative enzyme reaction product accumulation or reacted for Mitotracker Red, an indicator of mitochondrial membrane potential (m) and cytoplasmic TdT-mediated dUTP Nick-End Labeling (TUNEL), an indicator of cell death. Histochemical staining intensities for three mitochondrial enzymes, succinate dehydrogenase (SDH), cytochrome c oxidase (CO), and ATP synthase (ATPase) were measured in individual neurons and compared in ipsilateral and contralateral NM. Comparisons were made using unpaired t-tests (CO) or Kruskal Wallis one way ANOVA followed by Dunn's post hoc pairwise comparisons (ATPase, SDH). Mitotracker Red tissue was examined qualitatively for the presence of and extent of colocalization between Mitotracker Red and TUNEL label in NM. Results: Results showed global upregulation of all three oxidative enzymes within deafferented NM neurons compared to contralateral, unperturbed NM neurons. In addition, differential SDH and ATPase staining intensities were detected across neurons within the ipsilateral nucleus, suggesting functional differences in mitochondrial metabolism across deafferented NM. Quantitative analyses revealed that deafferented neurons with preferentially elevated SDH and ATPase activities represent the subpopulation destined to die following cochlea removal. In addition, Mitotracker Red accumulated intensely within the subset of deafferented NM neurons that also exhibited cytoplasmic TdT-mediated dUTP Nick-End Labeling (TUNEL) and subsequently died. Conclusions: Taken together, our results demonstrate that a subset of deafferented NM neurons, presumably those that die, preferentially upregulates SDH, perhaps via the tricarboxylic acid (TCA) cycle. These same neurons undergo ATPase uncoupling and an eventual loss of Δψm.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Michael Coronado ◽  
Giovanni Fajardo ◽  
Kim Nguyen ◽  
Mingming Zhao ◽  
Kristina Bezold Kooiker ◽  
...  

Mitochondria play a dual role in the heart, responsible for meeting energetic demands and regulating cell death. Current paradigms hold that mitochondrial fission and fragmentation are the result of pathologic stresses such as ischemia, are an indicator of poor mitochondrial health, and lead to mitophagy and cell death. However, recent studies demonstrate that inhibiting fission also results in cardiac impairment, suggesting that fission is important for maintaining normal mitochondrial function. In this study, we identify a novel role for mitochondrial fragmentation as a normal physiological adaptation to increased energetic demand. Using two models of exercise, we demonstrate that “physiologic” mitochondrial fragmentation occurs, results in enhanced mitochondrial function, and is mediated through beta 1-adrenergic receptor signaling. Similar to pathologic fragmentation, physiologic fragmentation is induced by activation of Drp1; however, unlike pathologic fragmentation, membrane potential is maintained and regulators of mitophagy are downregulated. To confirm the role of fragmentation as a physiological adaptation to exercise, we inhibited the pro-fission mediator Drp1 in mice using the peptide inhibitor P110 and had mice undergo exercise. Mice treated with P110 had significantly decreased exercise capacity, decreased fragmentation and inactive Drp1 vs controls. To further confirm these findings, we generated cardiac-specific Drp1 KO mice and had them undergo exercise. Mice with cardiac specific Drp1 KO had significantly decreased exercise capacity and abnormally large mitochondria compared to controls. These findings indicate the requirement for physiological mitochondrial fragmentation to meet the energetic demands of exercise and support the still evolving conceptual framework, where fragmentation plays a role in the balance between mitochondrial maintenance of normal physiology and response to disease.


Author(s):  
К.П. Кравченко ◽  
К. Л. Козлов ◽  
А.О. Дробинцева ◽  
Д.С. Медведев ◽  
В.О. Полякова

Для понимания патогенеза дилатационной кардиомиопатии (ДКМП) необходимо установить молекулярно-клеточные механизмы старения миокарда, в том числе связанные с программируемой клеточной гибелью, молекулярные механизмы которого практически не изучены. Цель работы - изучение маркеров апоптоза в кардиомиоцитах у пациентов с ДКМП in vitro. В работе использовали метод первичных диссоциированных клеточных культур и метод иммунофлюоресцентной конфокальной лазерной микроскопии. Для моделирования клеточного старения использовали клетки 3-го и 14-го пассажей, соответствующие «молодым» и «старым» культурам. На молекулярном уровне старение клеток кардиомиоцитов сопровождалось повышением экспрессии р16 в 2 раза по сравнению с «молодыми культурами» как в контрольной, так и в группе с ДКМП. Также установлено, что экспрессия р16 в культурах, взятых от пациентов с патологией, была в 2 раза выше, чем в аналогичных культурах от здоровых пациентов. Экспрессия р21 была повышена в группе с ДКМП по сравнению с контрольной группой, однако при старении культуры экспрессия p21 не изменялась, оставаясь на высоком уровне. Наиболее значимые различия были получены при сравнении экспрессии Bax в культуре клеток кардиомиоцитов из группы с ДКМП в «молодой» культуре с нормой - в 3,2 раза. Старение клеток миокарда на молекулярном уровне проявлялось в повышении экспрессии белка Baх, именно он является запускающим механизмом митохондриального пути апоптоза. Возможно, этот путь клеточной гибели является превалирующем при ДКМП. To understand the pathogenesis of dilated cardiomyopathy (DCMP), it is necessary to establish the molecular-cellular mechanisms of myocardial aging, including those associated with programmed cell death, the molecular mechanisms of which have not been practically studied. The aim of this work is to study markers of apoptosis in cardiomyocytes of patients with DCMP in vitro. We used the method of primary dissociated cell cultures and the method of immunofluorescence confocal laser microscopy. Cells of the 3 and 14 passages, corresponding to «young» and «old» cultures, were used to simulate cellular senescence. Results. At the molecular level, aging of cardiomyocyte cells was accompanied by a twofold increase in the expression of p16 compared to «young cultures» both in the control group and in the group with DCMP. It was also found that the expression of p16 in cultures taken from patients with pathology was 2 times higher than in similar cultures from healthy patients. The expression of p21 was increased in the group with DCMP compared to the control; however, with aging of the culture, the expression of p21 did not change, remaining at a significant level. The most significant differences were obtained when comparing the expression of Bax in the cell culture of cardiomyocytes from the group with DCMP in a «young» culture compared with the norm, 3,2 times. Aging of myocardial cells at the molecular level was manifested in an increase in the expression of the Bax protein, which is the triggering mechanism of the mitochondrial apoptosis pathway. It is possible that this pathway of cell death is prevalent in DCMP.


Sign in / Sign up

Export Citation Format

Share Document