scholarly journals Self-Conjugation of the EnteropathogenicEscherichia coliAdherence Factor Plasmid of Four Typical EPEC Isolates

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Claudia Silva ◽  
Crispín Zavala-Alvarado ◽  
José L. Puente

The enteropathogenicEscherichia coli(EPEC) adherence factor plasmid (pEAF) encodes the proteins involved in the biogenesis of the bundle-forming pilus (BFP), a key virulence factor that mediates microcolony formation and the localized adherence phenotype on the surface of the host enterocytes. The presence or absence of this plasmid defines typical EPEC (tEPEC) and atypical EPEC (aEPEC), respectively. Although lateral transfer of pEAF has been evidenced by phylogenetic studies, conjugal transfer ability has been experimentally established only for two pEAF plasmids from strains isolated in the late 60s. In the present work, we tested the self-conjugation ability of four pEAF plasmids from tEPEC strains isolated between 2007 and 2008 from children in Peru and the potential of aEPEC to receive them. A kanamycin resistance cassette was inserted into donor pEAF plasmids in order to provide a selectable marker in the conjugation experiments. Two aEPEC isolated from the same geographic region were used as recipient strains along with the laboratoryE. coliDH5αstrain. Here we show that the four pEAF plasmids tested are self-conjugative, with transfer frequencies in the range of 10−6to 10−9. Moreover, the generation of aEPEC strains harboring pEAF plasmids provides valuable specimens to further perform functional studies.

1999 ◽  
Vol 181 (13) ◽  
pp. 3981-3993 ◽  
Author(s):  
Sylvia A. Denome ◽  
Pamela K. Elf ◽  
Thomas A. Henderson ◽  
David E. Nelson ◽  
Kevin D. Young

ABSTRACT The penicillin binding proteins (PBPs) synthesize and remodel peptidoglycan, the structural component of the bacterial cell wall. Much is known about the biochemistry of these proteins, but little is known about their biological roles. To better understand the contributions these proteins make to the physiology ofEscherichia coli, we constructed 192 mutants from which eight PBP genes were deleted in every possible combination. The genes encoding PBPs 1a, 1b, 4, 5, 6, and 7, AmpC, and AmpH were cloned, and from each gene an internal coding sequence was removed and replaced with a kanamycin resistance cassette flanked by two ressites from plasmid RP4. Deletion of individual genes was accomplished by transferring each interrupted gene onto the chromosome of E. coli via λ phage transduction and selecting for kanamycin-resistant recombinants. Afterwards, the kanamycin resistance cassette was removed from each mutant strain by supplying ParA resolvase in trans, yielding a strain in which a long segment of the original PBP gene was deleted and replaced by an 8-bpres site. These kanamycin-sensitive mutants were used as recipients in further rounds of replacement mutagenesis, resulting in a set of strains lacking from one to seven PBPs. In addition, thedacD gene was deleted from two septuple mutants, creating strains lacking eight genes. The only deletion combinations not produced were those lacking both PBPs 1a and 1b because such a combination is lethal. Surprisingly, all other deletion mutants were viable even though, at the extreme, 8 of the 12 known PBPs had been eliminated. Furthermore, when both PBPs 2 and 3 were inactivated by the β-lactams mecillinam and aztreonam, respectively, several mutants did not lyse but continued to grow as enlarged spheres, so that one mutant synthesized osmotically resistant peptidoglycan when only 2 of 12 PBPs (PBPs 1b and 1c) remained active. These results have important implications for current models of peptidoglycan biosynthesis, for understanding the evolution of the bacterial sacculus, and for interpreting results derived by mutating unknown open reading frames in genome projects. In addition, members of the set of PBP mutants will provide excellent starting points for answering fundamental questions about other aspects of cell wall metabolism.


2003 ◽  
Vol 71 (1) ◽  
pp. 550-556 ◽  
Author(s):  
Hsing-Ju Tseng ◽  
Alastair G. McEwan ◽  
Michael A. Apicella ◽  
Michael P. Jennings

ABSTRACT It has been reported that Neisseria gonorrhoeae possesses a very high level of catalase activity, but the regulation of catalase expression has not been investigated extensively. In Escherichia coli and Salmonella enterica serovar Typhimurium, it has been demonstrated that OxyR is a positive regulator of hydrogen peroxide-inducible genes, including the gene encoding catalase. The oxyR gene from N. gonorrhoeae was cloned and used to complement an E. coli oxyR mutant, confirming its identity and function. The gene was inactivated by inserting a kanamycin resistance cassette and used to make a knockout allele on the chromosome of N. gonorrhoeae strain 1291. In contrast to E. coli, the N. gonorrhoeae oxyR::kan mutant expressed ninefold-more catalase activity and was more resistant to hydrogen peroxide killing than the wild type. These data are consistent with OxyR in N. gonorrhoeae acting as a repressor of catalase expression.


1996 ◽  
Vol 40 (7) ◽  
pp. 1695-1698 ◽  
Author(s):  
K Maneewannakul ◽  
S B Levy

Quinolone-resistant clinical Escherichia coli isolates were examined for mutations in the marRAB operon of the multiple antibiotic resistance (mar) locus. Among 23 strains evaluated, 8 were chosen for further study: 3 that showed relatively high levels of uninduced, i.e., constitutive, expression of the operon and 5 with variable responses to induction by salicylate or tetracyclines. The marR genes, specifying the repressor of the operon, cloned from the three strains constitutively expressing the operon did not reduce the level of expression of beta-galactosidase from a marO::lacZ transcriptional fusion and were therefore mutant; however, marR genes cloned from the five other clinical strains repressed LacZ expression and were wild type. All three mutant marR genes contained more than one mutation: a deletion and a point mutation. Inactivation of the mar locus in the three known marR mutant strains with a kanamycin resistance cassette introduced by homologous recombination reduced resistance to quinolones and multiple antibiotics. These findings indicate that mar operon mutations exist in quinolone-resistant clinical E. coli isolates and contribute to quinolone and multidrug resistance.


Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2707-2714 ◽  
Author(s):  
Won-Sik Kim ◽  
Heike Salm ◽  
Klaus Geider

A 3·3 kb fragment from Erwinia amylovora phage ϕEa1h in plasmid pJH94 was previously characterized and found to contain an exopolysaccharide depolymerase (dpo) gene and two additional ORFs encoding 178 and 119 amino acids. ORF178 (lyz) and ORF119 (hol) were found to overlap by 19 bp and they resembled genes encoding lysozymes and holins. In nucleotide sequence alignments, lyz had structurally conserved regions with residues important for lysozyme function. The lyz gene was cloned into an expression vector and expressed in Escherichia coli. Active lysozyme was detected only when E. coli cells with the lyz gene and a kanamycin-resistance cassette were grown in the presence of kanamycin. Growth of Erw. amylovora was inhibited after addition of enzyme exceeding a threshold for lysozyme to target cells. When immature pears were soaked in lysates of induced cells, symptoms such as ooze formation and necrosis were retarded or inhibited after inoculation with Erw. amylovora.


1998 ◽  
Vol 180 (10) ◽  
pp. 2779-2781 ◽  
Author(s):  
Xiaolan Zhang ◽  
Liuqin Zhu ◽  
Murray P. Deutscher

ABSTRACT Oligoribonuclease, a 3′-to-5′ exoribonuclease specific for small oligoribonucleotides, was purified to homogeneity from extracts ofEscherichia coli. The purified protein is an α2 dimer of 40 kDa. NH2-terminal sequence analysis of the protein identified the gene encoding oligoribonuclease as yjeR(o204a), a previously reported open reading frame located at 94 min on the E. coli chromosome. However, as a consequence of the sequence information, the translation start site of this open reading frame has been revised. Cloning of yjeRled to overexpression of oligoribonuclease activity, and interruption of the cloned gene with a kanamycin resistance cassette eliminated the overexpression. On the basis of these data, we propose thatyjeR be renamed orn. Orthologs of oligoribonuclease are present in a wide range of organisms, extending up to humans.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 704
Author(s):  
Angela Di Somma ◽  
Carolina Canè ◽  
Antonio Moretta ◽  
Angela Duilio

The research of new therapeutic agents to fight bacterial infections has recently focused on the investigation of antimicrobial peptides (AMPs), the most common weapon that all organisms produce to prevent invasion by external pathogens. Among AMPs, the amphibian Temporins constitute a well-known family with high antibacterial properties against Gram-positive and Gram-negative bacteria. In particular, Temporin-L was shown to affect bacterial cell division by inhibiting FtsZ, a tubulin-like protein involved in the crucial step of Z-ring formation at the beginning of the division process. As FtsZ represents a leading target for new antibacterial compounds, in this paper we investigated in detail the interaction of Temporin L with Escherichia coli FtsZ and designed two TL analogues in an attempt to increase peptide-protein interactions and to better understand the structural determinants leading to FtsZ inhibition. The results demonstrated that the TL analogues improved their binding to FtsZ, originating stable protein-peptide complexes. Functional studies showed that both peptides were endowed with a high capability of inhibiting both the enzymatic and polymerization activities of the protein. Moreover, the TL analogues were able to inhibit bacterial growth at low micromolar concentrations. These observations may open up the way to the development of novel peptide or peptidomimetic drugs tailored to bind FtsZ, hampering a crucial process of bacterial life that might be proposed for future pharmaceutical applications.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1851-1857 ◽  
Author(s):  
Nicole Gliese ◽  
Viola Khodaverdi ◽  
Max Schobert ◽  
Helmut Görisch

The response regulator AgmR was identified to be involved in the regulation of the quinoprotein ethanol oxidation system of Pseudomonas aeruginosa ATCC 17933. Interruption of the agmR gene by insertion of a kanamycin-resistance cassette resulted in mutant NG3, unable to grow on ethanol. After complementation with the intact agmR gene, growth on ethanol was restored. Transcriptional lacZ fusions were used to identify four operons which are regulated by the AgmR protein: the exaA operon encodes the pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the exaBC operon encodes a soluble cytochrome c 550 and an aldehyde dehydrogenase, the pqqABCDE operon carries the PQQ biosynthetic genes, and operon exaDE encodes a two-component regulatory system which controls transcription of the exaA operon. Transcription of exaA was restored by transformation of NG3 with a pUCP20T derivative carrying the exaDE genes under lac-promoter control. These data indicate that the AgmR response regulator and the exaDE two-component regulatory system are organized in a hierarchical manner. Gene PA1977, which appears to form an operon with the agmR gene, was found to be non-essential for growth on ethanol.


2006 ◽  
Vol 188 (6) ◽  
pp. 2163-2172 ◽  
Author(s):  
Paul W. King ◽  
Matthew C. Posewitz ◽  
Maria L. Ghirardi ◽  
Michael Seibert

ABSTRACT Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert, and M. L. Ghirardi, J. Biol. Chem. 279:25711-25720, 2004). Previous efforts to study [FeFe] hydrogenase maturation in Escherichia coli by coexpression of C. reinhardtii HydEF and HydG and the HydA1 [FeFe] hydrogenase were hindered by instability of the hydEF and hydG expression clones. A more stable [FeFe] hydrogenase expression system has been achieved in E. coli by cloning and coexpression of hydE, hydF, and hydG from the bacterium Clostridium acetobutylicum. Coexpression of the C. acetobutylicum maturation proteins with various algal and bacterial [FeFe] hydrogenases in E. coli resulted in purified enzymes with specific activities that were similar to those of the enzymes purified from native sources. In the case of structurally complex [FeFe] hydrogenases, maturation of the catalytic sites could occur in the absence of an accessory iron-sulfur cluster domain. Initial investigations of the structure and function of the maturation proteins HydE, HydF, and HydG showed that the highly conserved radical-SAM domains of both HydE and HydG and the GTPase domain of HydF were essential for achieving biosynthesis of active [FeFe] hydrogenases. Together, these results demonstrate that the catalytic domain and a functionally complete set of Hyd maturation proteins are fundamental to achieving biosynthesis of catalytic [FeFe] hydrogenases.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Shehara M. Mendis ◽  
Shawn Vasoo ◽  
Brian D. Johnston ◽  
Stephen B. Porter ◽  
Scott A. Cunningham ◽  
...  

ABSTRACT Escherichia coli bacteremia is caused mainly by sequence type complex 131 (STc131) and two clades within its fluoroquinolone-resistance-associated H30 subclone, H30R1 and H30Rx. We examined clinical and molecular correlates of E. coli bacteremia in two geographically distinct centers. We retrospectively studied 251 unique E. coli bloodstream isolates from 246 patients (48 from the Mayo Clinic, Rochester, MN [MN], and 198 from Tan Tock Seng Hospital, Singapore [SG]), from October 2013 through March 2014. Isolates underwent PCR for phylogroup, STc, blaCTX-M type, and virulence gene profiles, and medical records were reviewed. Although STc131 accounted for 25 to 27% of all E. coli bacteremia isolates at each site, its extended-spectrum-β-lactamase (ESBL)-associated H30Rx clade was more prominent in SG than in MN (15% versus 4%; P = 0.04). In SG only, patients with STc131 (versus other E. coli STc isolates) were more likely to receive inactive initial antibiotics (odds ratio, 2.8; P = 0.005); this was true specifically for patients with H30Rx (odds ratio, 7.0; P = 0.005). H30Rx comprised 16% of community-onset bacteremia episodes in SG but none in MN. In SG, virulence scores were higher for H30Rx than for H30R1, non-H30 STc131, and non-STc131 isolates (P < 0.02 for all comparisons). At neither site did mortality differ by clonal status. The ESBL-associated H30Rx clade was more prevalent and more often of community onset in SG, where it predicted inactive empirical treatment. The clonal distribution varies geographically and has potentially important clinical implications. Rapid susceptibility testing and clonal diagnostics for H30/H30Rx might facilitate earlier prescribing of active therapy.


2014 ◽  
Vol 58 (9) ◽  
pp. 4997-5004 ◽  
Author(s):  
Ritu Banerjee ◽  
James R. Johnson

ABSTRACTEscherichia colisequence type 131 (ST131) is an extensively antimicrobial-resistantE. coliclonal group that has spread explosively throughout the world. Recent molecular epidemiologic and whole-genome phylogenetic studies have elucidated the fine clonal structure of ST131, which comprises multiple ST131 subclones with distinctive resistance profiles, including the (nested) H30, H30-R, and H30-Rx subclones. The most prevalent ST131 subclone, H30, arose from a single common fluoroquinolone (FQ)-susceptible ancestor containing allele 30 offimH(type 1 fimbrial adhesin gene). An early H30 subclone member acquired FQ resistance and launched the rapid expansion of the resulting FQ-resistant subclone, H30-R. Subsequently, a member of H30-R acquired the CTX-M-15 extended-spectrum beta-lactamase and launched the rapid expansion of the CTX-M-15-containing subclone within H30-R, H30-Rx. Clonal expansion clearly is now the dominant mechanism for the rising prevalence of both FQ resistance and CTX-M-15 production in ST131 and inE. coligenerally. Reasons for the successful dissemination and expansion of the key ST131 subclones remain undefined but may include increased transmissibility, greater ability to colonize and/or persist in the intestine or urinary tract, enhanced virulence, and more-extensive antimicrobial resistance compared to otherE. coli. Here we discuss the epidemiology and molecular phylogeny of ST131 and its key subclones, possible mechanisms for their ecological success, implications of their widespread dissemination, and future research needs.


Sign in / Sign up

Export Citation Format

Share Document