scholarly journals High-Risk Leukemia: Past, Present, and Future Role of NK Cells

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Melissa Mavers ◽  
Alice Bertaina

Natural killer (NK) cells are a population of cytotoxic innate lymphocytes that evolved prior to their adaptive counterparts and constitute one of the first lines of defense against infected/mutated cells. Several studies have shown that in patients with acute leukemia given haploidentical hematopoietic stem cell transplantation, donor-derived NK cells play a key role in the eradication of cancer cells. The antileukemic effect is mostly related to the presence of “alloreactive” NK cells, that is, mature KIR+ NK cells that express inhibitory KIR mismatched with HLA class I (KIR-L) of the patient. A genotypic analysis detecting KIR B haplotype and the relative B content is an additional donor selection criterion. These data provided the rationale for implementing phase I/II clinical trials of adoptive infusion of either selected or ex vivo-activated NK cells, often from an HLA-mismatched donor. In this review, we provide a historical perspective on the role played by NK cells in patients with acute leukemia, focusing also on the various approaches to adoptive NK cell therapy and the unresolved issues therein. In addition, we outline new methods to enhance NK activity, including anti-KIR monoclonal antibody, bi-/trispecific antibodies linking NK cells to cytokines and/or target antigens, and CAR-engineered NK cells.

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1577
Author(s):  
Matteo Tanzi ◽  
Michela Consonni ◽  
Michela Falco ◽  
Federica Ferulli ◽  
Enrica Montini ◽  
...  

The limited efficacy of Natural Killer (NK) cell-based immunotherapy results in part from the suboptimal expansion and persistence of the infused cells. Recent reports suggest that the generation of NK cells with memory-like properties upon in vitro activation with defined cytokines might be an effective way of ensuring long-lasting NK cell function in vivo. Here, we demonstrate that activation with IL-12, IL-15 and IL-18 followed by a one-week culture with optimal doses of Interleukin (IL-2) and IL-15 generates substantial numbers of memory-like NK cells able to persist for at least three weeks when injected into NOD scid gamma (NSG) mice. This approach induces haploidentical donor-derived memory-like NK cells that are highly lytic against patients’ myeloid or lymphoid leukemia blasts, independent of the presence of alloreactive cell populations in the donor and with negligible reactivity against patients’ non-malignant cells. Memory-like NK cells able to lyse autologous tumor cells can also be generated from patients with solid malignancies. The anti-tumor activity of allogenic and autologous memory-like NK cells is significantly greater than that displayed by NK cells stimulated overnight with IL-2, supporting their potential therapeutic value both in patients affected by high-risk acute leukemia after haploidentical hematopoietic stem cell transplantation and in patients with advanced solid malignancies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paul D. Bates ◽  
Alexander L. Rakhmilevich ◽  
Monica M. Cho ◽  
Myriam N. Bouchlaka ◽  
Seema L. Rao ◽  
...  

Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 811
Author(s):  
Pranav Oberoi ◽  
Kathrina Kamenjarin ◽  
Jose Francisco Villena Ossa ◽  
Barbara Uherek ◽  
Halvard Bönig ◽  
...  

Obtaining sufficient numbers of functional natural killer (NK) cells is crucial for the success of NK-cell-based adoptive immunotherapies. While expansion from peripheral blood (PB) is the current method of choice, ex vivo generation of NK cells from hematopoietic stem and progenitor cells (HSCs) may constitute an attractive alternative. Thereby, HSCs mobilized into peripheral blood (PB-CD34+) represent a valuable starting material, but the rather poor and donor-dependent differentiation of isolated PB-CD34+ cells into NK cells observed in earlier studies still represents a major hurdle. Here, we report a refined approach based on ex vivo culture of PB-CD34+ cells with optimized cytokine cocktails that reliably generates functionally mature NK cells, as assessed by analyzing NK-cell-associated surface markers and cytotoxicity. To further enhance NK cell expansion, we generated K562 feeder cells co-expressing 4-1BB ligand and membrane-anchored IL-15 and IL-21. Co-culture of PB-derived NK cells and NK cells that were ex-vivo-differentiated from HSCs with these feeder cells dramatically improved NK cell expansion, and fully compensated for donor-to-donor variability observed during only cytokine-based propagation. Our findings suggest mobilized PB-CD34+ cells expanded and differentiated according to this two-step protocol as a promising source for the generation of allogeneic NK cells for adoptive cancer immunotherapy.


2020 ◽  
Vol 9 (11) ◽  
pp. 3502
Author(s):  
Tereza Dekojová ◽  
Lucie Houdová ◽  
Jiří Fatka ◽  
Pavel Pitule ◽  
Pavel Ostašov ◽  
...  

Killer-immunoglobulin-like receptors (KIRs) are critical natural killer (NK) cell regulators. The expression of KIRs is a dynamic process influenced by many factors. Their ligands—HLA(Human Leukocyte Antigen) class I molecules—are expressed on all nucleated cells that keep NK cells under control. In hematopoietic stem cell transplantation (HSCT), NK cells play an essential role in relapse protection. In the presented pilot study, we characterized the dynamic expression of inhibitory KIRS (iKIRs), which protect cells against untoward lysis, in donors and patients during the first three months after HSCT using flow cytometry. The expression of all iKIRs was highly variable and sometimes correlated with patients’ clinical presentation and therapy regiment. Cyclophosphamide (Cy) in the graft-versus-host disease (GvHD) prevention protocol downregulated KIR2DL1 to just 25% of the original donor value, and the FEAM (Fludarabine + Etoposid + Ara-C + Melphalan) conditioning protocol reduced KIR2DL3. In lymphoid neoplasms, there was a slightly increased KIR2DL3 expression compared to myeloid malignancies. Additionally, we showed that the ex vivo activation of NK cells did not alter the level of iKIRs. Our study shows the influence of pre- and post-transplantation protocols on iKIR expression on the surface of NK cells and the importance of monitoring their cell surface.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2288-2288
Author(s):  
Dean A. Lee ◽  
Vladimir V Senyukov ◽  
Jerome R Trembley

Abstract NK Cell subpopulations express tremendous diversity through polymorphisms, haplotypes, differential expression, and licensing of the Killer Immunoglobulin-like Receptors (KIR). KIR diversity affects both the predisposition to cancer, and the response to therapies such as hematopoietic stem cell transplantation. Clinical trials that take advantage of the anti-cancer properties of NK cells have been limited to choosing donors on the basis of KIR genotypes and/or HLA haplotypes. Moreover, adoptive immunotherapy approaches have been limited by low NK cell doses. The latter hurdle has been recently mitigated by methods for expanding clinical grade NK cells ex vivo. These approaches for growing large numbers of cells now enable investigation into selecting more potent NK cell subsets for increased therapeutic efficacy. We hypothesized that the desired KIR repertoire could be molded through inhibition of undesirable KIR populations by crosslinking with relevant anti-KIR antibodies during expansion with our previously described method, which produces a mean 30,000-fold expansion of NK cells in 3 weeks. First, we determined that maximum inhibition was obtained when anti-KIR antibodies were applied to previously activated NK cells, crosslinked with secondary antibody, and then restimulated for proliferation. Robust reduction of targeted KIR-positive populations could be achieved for each inhibitory KIR (Fig. 1). When pre-activated with anti-KIR2DL1 for one stimulation cycle, NK cells expressing this KIR were decreased by a median of 70.4% ± 19.3%. Similarly, KIR2DL2/3+ NK cells could be reduced by 56% ± 17.5%, and KIR3DL1+ NK cells could be reduced by 53.5% ± 16.3%. When anti-KIR antibodies were combined, similar suppression of multiple-KIR subpopulations was observed. Other NK cell receptors were not significantly affected during targeted KIR inhibition. We then assessed the resulting NK cell populations for degranulation responses to targets with selected HLA as KIR ligands. Inhibition of KIR-expressing subpopulations during expansion resulted in NK cell populations with enhanced degranulation against tumor cells expressing the HLA ligand of the targeted KIR. Importantly, the cytotoxicity of the bulk NK cell population against HLA-negative targets remained. These results indicate that KIR crosslinking during NK cell propagation enables significant reduction in the targeted KIR subpopulations, resulting in an NK cell population with a selective decrease in KIR inhibition. By utilizing antibody-controlled expansion for molding of the KIR repertoire according to patient HLA type, a personalized NK cell product may be produced with enhanced potency, improving NK cell immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2187
Author(s):  
Raffaella Meazza ◽  
Michela Falco ◽  
Fabrizio Loiacono ◽  
Paolo Canevali ◽  
Mariella Della Chiesa ◽  
...  

NK cells can exert remarkable graft-versus-leukemia (GvL) effect in HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT). Here, we dissected the NK-cell repertoire of 80 pediatric acute leukemia patients previously reported to have an excellent clinical outcome after αβT/B-depleted haplo-HSCT. This graft manipulation strategy allows the co-infusion of mature immune cells, mainly NK and γδT cells, and hematopoietic stem cells (HSCs). To promote NK-cell based antileukemia activity, 36/80 patients were transplanted with an NK alloreactive donor, defined according to the KIR/KIR-Ligand mismatch in the graft-versus-host direction. The analysis of the reconstituted NK-cell repertoire in these patients showed relatively high proportions of mature and functional KIR+NKG2A−CD57+ NK cells, including the alloreactive NK cell subset, one month after HSCT. Thus, the NK cells adoptively transfused with the graft persist as a mature source of effector cells while new NK cells differentiate from the donor HSCs. Notably, the alloreactive NK cell subset was endowed with the highest anti-leukemia activity and its size in the reconstituted repertoire could be influenced by human cytomegalovirus (HCMV) reactivation. While the phenotypic pattern of donor NK cells did not impact on post-transplant HCMV reactivation, in the recipients, HCMV infection/reactivation fostered a more differentiated NK-cell phenotype. In this cohort, no significant correlation between differentiated NK cells and relapse-free survival was observed.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3767
Author(s):  
Léa Dubreuil ◽  
Patrice Chevallier ◽  
Christelle Retière ◽  
Katia Gagne

Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2293-2293
Author(s):  
Ekta Kapadia ◽  
Elad Jacoby ◽  
Mark Kohler ◽  
Waleed Haso ◽  
Christopher Daniel Chien ◽  
...  

Abstract Childhood leukemia is the most common pediatric malignancy. There are now excellent cure rates for these patients, however outcomes remain poor for those with refractory disease and for those who relapse after standard salvage therapies, with a disease recurrence of approximately 50%. Therefore, development of novel cellular therapies is essential to treat these refractory patients. Natural Killer (NK) cells generated from an allograft contribute to improved disease free survival after Hematopoietic Stem Cell Transplantation for leukemia when there is a KIR mismatch. This effect appears to be particularly potent in the setting of Acute Myelogenous Leukemia (AML) with less benefit demonstrated in Acute Lymphoblastic Leukemia (ALL). Preclinical studies have also suggested that activation and expansion of resting NK cells can enhance NK cell cytotoxicity and eliminate the need for KIR mismatch due to up-regulation of activating receptors. We are currently testing this approach in the clinic following a fully matched allogeneic transplant platform for leukemia. Our aim is to explore whether 41BB ligand (41BBL) and recombinant IL-15 (rIL-15) mediated ex vivo expansion of autologous NK cells results in enhanced activity against AML and ALL. The activation/expansion process may allow for the use of autologous NK cell infusions, thus eliminating the need for allogeneic NK cell donors. To test this hypothesis, we ex vivo expanded and activated NK cells derived from C57BL/6J (B6) mice using artificial Antigen Presenting Cells (aAPCs) containing 41BBL and rIL-15 for 7-14 days. NK cells were co-cultured with murine AML cells (C1498) and murine ALL cells (E2A-PBX) – both on B6 background. Controls included YAC cells (murine T-cell lymphoma cell line sensitive to NK cell killing) as well as Phorbol Myristate Acetate (PMA)/ionomycin. All cells were co-cultured for 5 hours prior to functional assessment of NK cells via CD107a degranulation. NK cells cultured with 41BBL aAPCs and rIL-15 had a 30-fold expansion in numbers (Figure 1) and an increase in purity to approximately 95-98% (NK1.1+, CD3–) by Day 7. In the absence of cytokine or aAPCs, cultured NK cells underwent rapid apoptosis. Functionally, although resting NK cells (harvested prior to assessment) expressed CD107a when cultured with YAC cells and PMA, only minimal degranulation was observed in the presence of autologous AML cells or ALL cells. In contrast, activated and expanded autologous NK cells displayed enhanced activity against ALL, AML, as well as YAC cells, while only minimal levels of CD107a were seen in the absence of targets (Figure 2). In vivo experiments with a single injection of activated and expanded NK cells did not result in prolonged survival of mice bearing either AML or ALL. Assessment of adoptively transferred NK cells demonstrated very transient persistence (<2 days) with no in vivo expansion, suggesting that repeated injections may be necessary for leukemia eradication. Future murine experiments will investigate the effect repeated injections of activated/expanded NK cells and/or the administration of rIL-15 will have on survival and leukemia eradication. In addition, the ability to activate and expand NK cells in culture provides an opportunity for lentiviral-based transduction with chimeric antigen receptor (CAR) vectors. We are currently testing this with a murine CD19 CAR. These experiments suggest that autologous activated and expanded NK cells may serve as a viable cellular therapy for pediatric patients with refractory/relapsed leukemia. As demonstrated in these in vitro experiments, autologous activated/expanded NK cells still show increased targeting of mouse AML and ALL cell lines despite the lack of KIR mismatch. Thus, they may serve as a potential platform for leukemia therapy, including ALL, which appear to be poor targets for resting NK cells. In addition, these cells demonstrate transient persistence in vivo, a potential advantage in the context of redirected cytotoxicity using CAR constructs that target antigens with broader expression in the hematopoietic compartment. Figure 1: <![if !vml]><![endif]> Figure 1:. <![if !vml]><![endif]> Figure 2: Figure 2:. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4296-4296
Author(s):  
Mattias Carlsten ◽  
Ali Namazi ◽  
Robert N. Reger ◽  
Maria Berg ◽  
Richard W. Childs

Abstract Although the proteasome inhibitor bortezomib has significantly improved the survival of patients with multiple myeloma (MM), most patients treated with this drug eventually develop progressive disease. Recent data indicate that MM cells can evade bortezomib-induced cell death by undergoing autophagy as a consequence of endoplasmatic reticulum (ER)-stress triggered by proteasome inhibition. Here we show that bortezomib-evading MM cells become highly sensitized to killing by natural killer (NK) cells via ER-stress-induced reduction of the NK cell inhibitory molecule HLA-E that is normally expressed at high levels on the surface of MM cells. High-resolution flow cytometry-based assays revealed augmented NK cell recognition and degranulation against bortezomib-exposed MM cells (3 fold higher compared to untreated MM controls) was restricted to NK cells exclusively controlled by the HLA-E-binding inhibitory receptor NKG2A (NKG2ASP NK cells) (Figure 1). In contrast, due to unchanged high expression of other HLA class I molecules on the surface of bortezomib-exposed MM cells there was no augmentation in degranulation by NK cells controlled by other inhibitory HLA class I-binding receptors, such as killer immunoglobulin-like receptors (KIRs). Compared to their non-expanded counterparts, ex vivo expanded NK cells have previously been shown to have an increased proportion of NKG2ASP NK cells (50% vs 25%, p<0.01) and bolstered cytotoxic function against tumor cells. Using NK cells expanded in accordance with our ongoing FDA-approved clinical trial evaluating adoptive infusion of autologous ex vivo expanded NK cells in patients with refractory cancers at the NIH, we established these highly cytotoxic NKG2ASP dominant NK cells induced substantially higher lysis of bortezomib-exposed MM cells compared to non-expanded matched control NK cells (38% vs 18%, p<0.05) (Figure 2). Based on these findings, we hypothesize that adoptive infusions of ex vivo expanded autologous NK cells following treatment with bortezomib could eradicate the fraction of MM cells that would normally evade killing through proteasome inhibition alone. The increased vulnerability of bortezomib-evading cells to NK cell cytotoxicity identifies a critical Achilles heel in myeloma cells and suggests adoptive NK cell infusions following bortezomib therapy could potentially be utilized as a strategy to improve long-term survival in MM patients. Figure 1. Degranulation of NK cell subsets against myeloma cells exposed to bortezomib. NT; No target NK cell killing of bortezomib-exposed myeloma cells. Figure 1. Degranulation of NK cell subsets against myeloma cells exposed to bortezomib. NT; No target. / NK cell killing of bortezomib-exposed myeloma cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (13) ◽  
pp. 2686-2694 ◽  
Author(s):  
Andreas T. Björklund ◽  
Marie Schaffer ◽  
Cyril Fauriat ◽  
Olle Ringdén ◽  
Mats Remberger ◽  
...  

Abstract Natural killer (NK)–cell alloreactivity in recipients of hematopoietic stem cell grafts from HLA-identical siblings is intriguing and has suggested breaking of NK-cell tolerance during the posttransplantation period. To examine this possibility, we analyzed clinical outcomes in a cohort of 105 patients with myeloid malignancies who received T cell–replete grafts from HLA-matched sibling donors. Presence of inhibitory killer cell immunoglobulin-like receptors (KIRs) for nonself HLA class I ligands had no effect on disease-free survival, incidence of relapse, or graft-versus-host disease. A longitudinal analysis of the NK-cell repertoire and function revealed a global hyporesponsiveness of NK cells early after transplantation. Functional responses recovered at approximately 6 months after transplantation. Importantly, NKG2A− NK cells expressing KIRs for nonself HLA class I ligands remained tolerant at all time points. Furthermore, a direct comparison of NK-cell reconstitution in T cell–replete and T cell–depleted HLA-matched sibling stem cell transplantation (SCT) revealed that NKG2A+ NK cells dominated the functional repertoire early after transplantation, with intact tolerance of NKG2A− NK cells expressing KIRs for nonself ligands in both settings. Our results provide evidence against the emergence of alloreactive NK cells in HLA-identical allogeneic SCT.


Sign in / Sign up

Export Citation Format

Share Document