scholarly journals A Comparison of the Preservation of Mouse Adipose Tissue-Derived Mesenchymal Stem Cells Using the University of Wisconsin Solution and Hank’s Balanced Salt Solution

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Saifun Nahar ◽  
Yoshiki Nakashima ◽  
Chika Miyagi-Shiohira ◽  
Takao Kinjo ◽  
Naoya Kobayashi ◽  
...  

Preservation of adipose tissue before the isolation of cells is one of the most important steps in maintaining the cell viability of adipose tissue-derived mesenchymal stem cells (ADSCs) for clinical use. Hank’s balanced salt solution (HBSS) is one of the main ADSC preservation solutions used clinically. However, this step is known to lead to decreased cell viability. The University of Wisconsin (UW) solution is recognized by transplant physicians as an excellent organ preservation solution. We aimed to investigate the effectiveness of UW solution in preservation of the viability of ADSCs. We collected adipose tissue from the inguinal fat pad of mice and compared preservation in UW solution and HBSS overnight by measuring cell viability after isolation. We found that the number of viable cells harvested per gram of adipose tissue mass was higher in UW solution- than HBSS-preserved tissue.

2005 ◽  
Vol 14 (10) ◽  
pp. 837-843 ◽  
Author(s):  
Alfonso Serralta ◽  
Maria Teresa Donato ◽  
Amparo Martinez ◽  
Eugenia Pareja ◽  
Francisco Orbis ◽  
...  

A major problem for the isolation and transplantation of hepatocytes is the lack of resources for obtaining viable hepatocytes. Improving this situation would enhance hepatic cell transplantation programs. Our objective was to evaluate the influence of the preservation solutions used during organ retrieval on the quality of hepatocytes isolated from liver tissue. We compared the results of the collagenase perfusion technique for isolation of hepatocytes in human livers flushed with University of Wisconsin (UW) and Celsior preservation solutions. Yield (number of viable cells per gram of tissue), cellular viability, efficiency of cells to attach to culture plates and form a monolayer, and drug metabolizing competence of the hepatocytes were measured. Successful isolation was achieved in 63% of the procedures using the UW solution and 100% of the procedures using the Celsior solution. In the UW group, significantly lower cell viability (38 ± 41% vs. 79 ± 14%, p < 0.05), yield of cells (4.0 ± 5.2 × 106 vs. 8.2 ± 5.6 × 106 cells/g, p < 0.05), and protein content at 24 h of culture (0.6 ± 0.6 vs. 1.2 ± 0.3 mg protein per plate, p < 0.05) than in Celsior solution were found. However, similar values of P450 activities were found in both groups. The more successful isolation, better yield, and higher cell viability obtained from human liver grafts preserved in Celsior solution, in comparison to UW solution, suggest Celsior solution as the most appropriate for preserving cadaveric hepatic tissue to be used for hepatocyte harvesting.


Author(s):  
Nazlı Çil ◽  
Mutlu Yaka ◽  
Nazire Gül Neşet ◽  
Mücahit Seçme ◽  
Gülçin Abban Mete

Abstract Objectives Stem cell treatment is based on Melatonin which is crucial for lots of pathological and physiological pathways. Our aim is determining the most appropriate dose of melatonin affecting the rat adipose tissue mesenchymal stem cells. Methods Stem cells were isolated from male rat adipose tissue. Differentiation and characterization experiments were performed. Cell viability analyses in stem cells were used the XTT [2,3-Bis-(2-methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide] assay. After 24 h incubation, different concentrations (0.5, 1, 5, 10, 50 µM) of extract were treated to the stem cells for 24 h, 48 and 72 h considering time and dose dependent manner. Total antioxidant status (TAS) and the total oxidant status (TOS) in control cells and melatonin treated cells (5, 10 µM) were determined Rel Assay commercial kits. Results In 24 h, melatonin increased cell viability in all groups. When we evaluate the effect of melatonin in 48 h, the most proliferation increase was seen at 5, 10 µM doses. When the total oxidant activity melatonin was found to be significantly lower in 5 and 10 µM dose groups of melatonin. Conclusions Melatonin increases the survivor of stem cells and the most effective dose is 5 and 10 µM. The reduction of the oxidative stress index as a result of treating melatonin to mesenchymal stem cells showed that melatonin is a powerful antioxidant for stem cells.


2018 ◽  
Vol 39 (5) ◽  
pp. 1993
Author(s):  
Saulo Tadeu Lemos Pinto Filho ◽  
Matheus Pippi da Rosa ◽  
Tiago Luis Eilers Treichel ◽  
Fabíola Dalmolin ◽  
Alencar Kolinski Machado ◽  
...  

Mesenchymal stem cells are a population of somatic cells found in several tissues of an adult organism, including adipose tissue. Reactive oxygen species (ROS) can cause cellular alterations, including mutagenesis and genomic instability and the development of diseases. Thus, it is important to understand ROS-induced damage to cell macromolecules such as DNA, proteins, and lipids. In this study, we investigated oxidative stress rates and viability of adipose tissue-derived mesenchymal stem cells (ADSCs) from the greater omentum of rabbits. Cell cultures were analyzed at different passages (1-5) using the dichlorofluorescein acetate assay for measuring ROS production and cell viability tests. ROS levels were highest at passage 2 and cell viability was highest at passage 4.


2019 ◽  
Vol 19 (9) ◽  
pp. 688-698 ◽  
Author(s):  
Azam Roohi ◽  
Mahin Nikougoftar ◽  
Hamed Montazeri ◽  
Shadisadat Navabi ◽  
Fazel Shokri ◽  
...  

Background: Oxidative stress and chronic hyperglycemia are two major side effects of type 2 diabetes affecting all cell types including mesenchymal stem cells (MSCs). As a cell therapy choice, understanding the behavior of MSCs will provide crucial information for efficient treatment. Methods: Placental mesenchymal stem cells were treated with various concentrations of glucose, metformin, rapamycin, and hydrogen peroxide to monitor their viability and cell cycle distribution. Cellular viability was examined via the MTT assay. Cell cycle distribution was studied by propidium iodide staining and apoptosis was determined using Annexin Vpropidium iodide staining and flow cytometry. Involvement of potential signaling pathways was evaluated by Western blotting for activation of Akt, P70S6K, and AMPK. Results: The results indicated that high glucose augmented cell viability and reduced metformin toxic potential. However, the hydrogen peroxide and rapamycin toxicities were exacerbated. Conclusion: Our findings suggest that high glucose concentration has a major effect on placental mesenchymal stem cell viability in the presence of rapamycin, metformin and hydrogen peroxide in culture.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2021 ◽  
Vol 22 (3) ◽  
pp. 1375
Author(s):  
María Carmen Carceller ◽  
María Isabel Guillén ◽  
María Luisa Gil ◽  
María José Alcaraz

Adipose tissue represents an abundant source of mesenchymal stem cells (MSC) for therapeutic purposes. Previous studies have demonstrated the anti-inflammatory potential of adipose tissue-derived MSC (ASC). Extracellular vesicles (EV) present in the conditioned medium (CM) have been shown to mediate the cytoprotective effects of human ASC secretome. Nevertheless, the role of EV in the anti-inflammatory effects of mouse-derived ASC is not known. The current study has investigated the influence of mouse-derived ASC CM and its fractions on the response of mouse-derived peritoneal macrophages against lipopolysaccharide (LPS). CM and its soluble fraction reduced the release of pro-inflammatory cytokines, adenosine triphosphate and nitric oxide in stimulated cells. They also enhanced the migration of neutrophils or monocytes, in the absence or presence of LPS, respectively, which is likely related to the presence of chemokines, and reduced the phagocytic response. The anti-inflammatory effect of CM may be dependent on the regulation of toll-like receptor 4 expression and nuclear factor-κB activation. Our results demonstrate the anti-inflammatory effects of mouse-derived ASC secretome in mouse-derived peritoneal macrophages stimulated with LPS and show that they are not mediated by EV.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Anirban Mandal ◽  
Ajeet Kumar Jha ◽  
Dew Biswas ◽  
Shyamal Kanti Guha

Abstract Background The study was conducted to assess the characterization, differentiation, and in vitro cell regeneration potential of canine mesenteric white adipose tissue-derived mesenchymal stem cells (AD-MSCs). The tissue was harvested through surgical incision and digested with collagenase to obtain a stromal vascular fraction. Mesenchymal stem cells isolated from the stromal vascular fraction were characterized through flow cytometry and reverse transcription-polymerase chain reaction. Assessment of cell viability, in vitro cell regeneration, and cell senescence were carried out through MTT assay, wound healing assay, and β-galactosidase assay, respectively. To ascertain the trilineage differentiation potential, MSCs were stained with alizarin red for osteocytes, alcian blue for chondrocytes, and oil o red for adipocytes. In addition, differentiated cells were characterized through a reverse transcription-polymerase chain reaction. Results We observed the elongated, spindle-shaped, and fibroblast-like appearance of cells after 72 h of initial culture. Flow cytometry results showed positive expression for CD44, CD90, and negative expression for CD45 surface markers. Population doubling time was found 18–24 h for up to the fourth passage and 30±0.5 h for the fifth passage. A wound-healing assay was used to determine cell migration rate which was found 136.9 ± 4.7 μm/h. We observed long-term in vitro cell proliferation resulted in MSC senescence. Furthermore, we also found that the isolated cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. Conclusions Mesenteric white adipose tissue was found to be a potential source for isolation, characterization, and differentiation of MSCs. This study might be helpful for resolving the problems regarding the paucity of information concerning the basic biology of stem cells. The large-scale use of AD-MSCs might be a remedial measure in regenerative medicine.


2020 ◽  
Author(s):  
Elsa González‐Cubero ◽  
María Luisa González‐Fernández ◽  
Laura Gutiérrez‐Velasco ◽  
Eliezer Navarro‐Ramírez ◽  
Vega Villar‐Suárez

Sign in / Sign up

Export Citation Format

Share Document