scholarly journals Gallic Acid Attenuates Dimethylnitrosamine-Induced Liver Fibrosis by Alteration of Smad Phosphoisoform Signaling in Rats

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yuxin Chen ◽  
Ziping Zhou ◽  
Qigui Mo ◽  
Gao Zhou ◽  
Youwei Wang

Dimethylnitrosamine (DMN) is a potent hepatotoxin, carcinogen, and mutagen. In our previous study, a candidate gallic acid (GA) that widely exists in food and fruit was selected for its capability to alleviate DMN toxicity in vivo. We aimed to investigate the therapeutic potential of GA against DMN-induced liver fibrosis. During the first four weeks, DMN was administered to rats via intraperitoneal injection every other day, except the control group. GA or silymarin was given to rats by gavage once daily from the second to the sixth week. GA significantly reduced liver damage in serum parameters and improved the antioxidant capacity in liver and kidney tissues. Cytokines involved in liver fibrosis were measured at transcriptional and translational levels. These results indicate that GA exhibits robust antioxidant and antifibrosis effects and may be an effective candidate natural medicine for liver fibrosis treatment.

2019 ◽  
Vol 51 (3) ◽  
pp. 134-140
Author(s):  
Diding Heri Prasetyo ◽  
Sarsono Sarsono ◽  
Ida Nurwati ◽  
Prihandjojo Andri Putranto ◽  
Martini Martini ◽  
...  

Liver cirrhosis is the irreversible stage in liver damage process which occurs after liver fibrosis due to necro-inflammatory activities and liver fibrosis. Therefore, inhibition of liver inflammation and fibrosis is very important to prevent liver cirrhosis. This study aimed to analyze the effect of ethanol extract of propolis (EEP) from mount Lawu, Indonesia to prevent liver damage and fibrosis progression in mice with hepatic cirrhosis. This study was performed during the period of June 2018 to May 2019 on a sample of 32 male Balb/C mice divided into control group (P1), induction of carbon tetrachloride (CCl4 ) group (P2), induction of 50 mg/BW CCl4 + EEP group (P3), and (induction of 100 mg/KgBW CCl4 + EEP (P4) with each group consisted of eight mice. The CCl4 in olive oil was administered intraperitoneally three times a week for six weeks. Mean differences between group was determined using ANOVA test with a significance level of 0.05. The induction of CCl4 increased liver cell damage and serum alanin aminotransferase (ALT) level. However, the addition of EEP significantly (p<0.001) reduced liver cell damage as seen in P3 (54.38±4.17 per 100 liver cells) and P4 (37.13±4.36 per 100 liver cells) groups and serum alanin aminotransferase (ALT) as seen in P3 (291.19±113.92 U/L) and P4 (229.38±73.45 U/L) groups. The APRI scores were also reduced after EEP as seen in P3 (0.738±0.292) and P4 (0.513±0.253) groups. Thus, EEP isolates from Gunung Lawu can reduce liver cell damage and fibrosis in mice model of hepatic cirrhosis.


2014 ◽  
Vol 83 (4) ◽  
pp. 299-304 ◽  
Author(s):  
Jitka Osičková ◽  
Hana Banďouchová ◽  
Veronika Kováčová ◽  
Jiří Král ◽  
Ladislav Novotný ◽  
...  

Responses of wildlife to multiple stressors fit in the ecological concept of trade-off. While toxicity of non-steroidal anti-inflammatory drugs and heavy metals for free-ranging birds has been shown in single exposures, the present study aims to evaluate oxidative stress, and liver and kidney damage caused by single and combined effects of diclofenac and lead in the Japanese quail. Forty Japanese quail (Coturnix coturnix japonica) were divided into equal groups of controls, diclofenac, Pb, and Pb+diclofenac exposures. The birds were exposed to the respective chemicals through insertion of lead shots (1.5 g) into the crop on day 0 of the experiment and/or administration of 5 mg/kg of diclofenac intramuscularly in two treatments on days 0 and 5. Groups in liver and kidney tissues of birds were then compared after 10 days using histopathology and biochemistry markers such as glutathione reductase (GR), ferric reducing antioxidant power (FRAP), and lipid peroxidation measured as total thiobarbituric acid reactive species (TBARS). The liver damage score gradient was Pb+diclofenac exposure group > Pb exposure group > diclofenac exposure group and hepatic TBARS values were significantly increased in the group of birds exposed to a combination of diclofenac and lead compared to the healthy control group. The study has shown that, apart from the reported nephrotoxicity of diclofenac, hepatic toxicity should also be considered. Avian clinicians should be cautious when selecting drugs for therapy of wild birds with unknown history of exposure to toxic substances.


Author(s):  
Rasha Att ◽  
Angie Ameen ◽  
Horeya Korayem ◽  
Noha Abogresha ◽  
Yasser El-Wazir

IntroductionRegenerative treatment using stem cells represents a potentially effective therapy for cerebellar ataxia (CA). We compared the therapeutic potential of adipose tissue stem cells (ASCs) and bone marrow mesenchymal stem cells (BM-MSCs) in a rodent monosodium glutamate (MSG)-induced CA cell (BM-MSC) model.Material and methodsFemale Wistar rats (n = 40) were equally divided into a saline-treated control group and 3 MSG-induced CA groups randomly treated with either saline, or 1 × 106 ASCs or BM-MSCs. We assessed the following: 1) cerebellar motor functions in vivo (by Rotarod test, open-field test, and Quantitative gait analysis); 2) cerebellar histological architecture; and 3) cerebellar immunohistochemical examination of the Bax/Bcl-2 ratio as in indicator of apoptosis, and the levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1) as neuroprotective factors.ResultsTreatment with either of the MSCs improved MSG-induced poor motor performance, restored the disrupted Purkinje cell layer, decreased neuronal apoptosis and enhanced cerebellar VEGF and IGF-1 levels observed in CA rats. Adipose tissue stem cells showed superiority over BM-MSCs in the improvement of some motor performance parameters and cerebellar VEGF and IGF-1 levels.ConclusionsIn conclusion, both stem cell types induced structural, physiological, and biochemical improvement, with ASCs being best for treatment of CA.


2021 ◽  
Author(s):  
Yuan Nie ◽  
Chen-kai Huang ◽  
Cong Liu ◽  
Xuan Zhu

Abstract Background: Previous studies have indicated that Kupffer cells (KCs) are the main regulatory cells for the activation of hepatic stellate cells (HSCs), and caspase-11/NLRP3 inflammasome signaling plays crucial roles in the activation of monocyte-macrophages. Ursolic acid (UA) is a traditional Chinese medicine with antifibrotic effects, but the molecular mechanism underlying these effects is still unclear.Methods: A mouse primary Kupffer cell line in vitro and liver fibrosis mice (including specific gene knockout mice) in vivo were selected as experimental objects. RT-qPCR and Western blotting techniques were utilized to assess the mRNA and protein expression in each group. ELISA and histological analysis were utilized to assess liver injury and collagen deposition.Results: In vitro, caspase-11/NLRP3 inflammasome signaling promoted the activation of Kupffer cells, and UA inhibited the activation of Kupffer cells by caspase-11/NLRP3 inflammasome signaling. In vivo, UA reversed liver damage and fibrosis in fibrotic mice and was related to Kupffer cells; the expression of Caspase-11/NLRP3 inflammasome signaling in Kupffer cells of the UA group was inhibited. Even in the CCl4 group, the liver damage and fibrosis of NLRP3 knockout mice were alleviated, and related experiments also proved that the inhibitory effect of UA on Kupffer cells was related to the activation of the NLRP3 inflammasome.Conclusion: Caspase-11/NLRP3 inflammasome signal transduction is closely related to the activation of Kupffer cells and the occurrence of liver fibrosis. Additionally, caspase-11/NLRP3 inflammasome signaling serves as a new target for UA antifibrosis treatment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2368-2368
Author(s):  
Luise A de Albuquerque Simoes ◽  
Isabel Weinhäuser ◽  
Diego A Pereira-Martins ◽  
César Alexander Ortiz Rojas ◽  
Thiago Mantello Bianco ◽  
...  

Abstract Accumulating evidence suggest that the axon guidance molecules SLIT and ROBO are not only implicated in physiological process but also in cancer progression. Depending on the type of cancer the SLIT-ROBO axis can either act as a tumor suppressor gene, in which case the SLIT2 promoter site is frequently hypermethylated or as an oncogene, whereby high expression is often associated with poor prognosis. In the context of acute myeloid leukemia (AML), low expression of SLIT2 has been associated with low overall survival (OS) (Golos et al., 2019), while the functional role of SLIT2 remains largely unknown. Recently, we showed that the knockdown of SLIT2 increased cell proliferation of acute promyelocytic leukemia (APL) cells resulting in a more aggressive course of disease progression in vivo using the murine transgenic APL model (Weinhäuser et al., 2020). Here, we aimed to study the functional role of SLIT2 in a more heterogeneous disease, such as AML. Using different publicly available datasets. (GSE58477, normal karyotype blasts: 62, healthy CD34 +: 10; GSE63409, LSC: 14, HSC: 5) we detected increased methylation at the SLIT2 promoter site of AML leukemic cells compared to healthy CD34 + cells suggesting SLIT2 tumor suppressive functions. In addition, we measured decreased levels of SLIT2 in the bone marrow (BM) plasma of AML patients compared to healthy donors. To assess the biological role of SLIT2, we treated AML cell lines (KASUMI1, MV411, and MOLM13) with recombinant SLIT2 (50 ng/mL) in vitro. Administration of SLIT2 reduced AML cell growth, colony formation and induced cell cycle arrest in the G1 phase for all AML cell lines. Conversely, the knockdown of SLIT2 promoted increased THP-1 and OCI-AML3 cell proliferation. Next, we determined whether the treatment with SLIT2 could delay leukemogenesis in vivo using the AML cell line MV4-11. Engraftment was monitored by luciferase bioluminescent signal and NSGS mice were either treated with recombinant SLIT2 using a dose of 25 ng/g of body weight or vehicle (control group). SLIT2 therapy resulted in a lower disease burden, decreased leukemic infiltration in the BM and spleen, reduced spleen size, and increased OS compared to the control group (p&lt;0.05). In conclusion, we showed that SLIT2 methylation is recurrent in AML patients and that the level of SLIT2 in the plasma of AML patients is reduced. Moreover, SLIT2 treatment appears to have a cytostatic effect on different AML cell lines delaying leukemogenesis in vivo. Overall, our study reveals the therapeutic potential of SLIT2 in hematological malignancies, which could be used as an adjuvant in the clinic. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Xia Yao ◽  
Jing Wang ◽  
Jiajing Zhu ◽  
Xiaoli Rong

Abstract Background: Liver fibrosis resulting from chronic liver injury is one of the major causes of mortality worldwide. Stem cells-secreted secretome has been evaluated for overcoming the limitations of cell-based therapy in hepatic disease, while maintaining its advantages.Methods: In this study, we investigated the effect ofhuman fetal skin-derived stem cells (hFFSCs) secretome in the treatment of liver fibrosis. To determine the therapeutic potential of the hFFSCssecretome in liver fibrosis, we established the CCl4-induced rat liver fibrosis model, and administered hFFSCssecretome in vivo. Moreover, we investigated the anti-fibrotic mechanism of hFFSCssecretome in hepatic stellate cells (HSCs).Results: Our results showed that hFFSCssecretomeffectively reduced collagen content in liver, improved the liver function and promoted liver regeneration. Interestingly, we also found thathFFSCssecretom reduced liver fibrosis through suppressing the epithelial-mesenchymal transition (EMT) process. In addition, we found that hFSSCsecretom inhibited the TGF-β1, Smad2, Smad3, and Collagen I expression, however, increased Smad7 expression.Conclusions: In conclusions, our results suggest that hFFSCssecretome treatment could reduce CCl4-induced liver fibrosis via regulating the TGF-β/Smad signal pathway.


2021 ◽  
Author(s):  
Ning Wang ◽  
Xiajing Li ◽  
Zhiyong Zhong ◽  
Yaqi Qiu ◽  
Shoupei Liu ◽  
...  

Abstract BackgroundExosomes secreted from stem cells exerted salutary effects on the fibrotic liver. Herein, the roles of exosomes derived from human embryonic stem cell (hESC) in anti-fibrosis were extensively investigated. Compared with two-dimensional (2D) culture, the clinical and biological relevance of three-dimensional (3D) cell spheroids were greater because of their higher regeneration potential since they behave more like cells in vivo. In our study, exosomes derived from 3D human embryonic stem cells (hESC) spheroids and the monolayer (2D) hESCs were collected and compared the therapeutic potential for fibrotic liver in vitro and in vivo. ResultsIn vitro, PKH26 labled-hESC-Exosomes were shown to be internalized and integrated into TGFβ-activated-LX2 cells, and reduced the expression of profibrogenic markers, thereby regulating cellular phenotypes. TPEF imaging indicated that PKH26-labled-3D-hESC-Exsomes possessed an enhanced capacity to accumulate in the livers and exhibited more dramatic therapeutic potential in the injured livers of fibrosis mouse model. 3D-hESC-Exosomes decreased profibrogenic markers and liver injury markers, and improved the level of liver functioning proteins, eventually restoring liver function of fibrosis mice. miRNA array revealed a significant enrichment of miR-6766-3p in 3D-hESC-Exosomes, moreover, bioinformatics and dual luciferase reporter assay identified and confirmed the TGFβRII gene as the target of miR-6766-3p. Furthermore, the delivery of miR-6766-3p into activated-LX2 cells decreased cell proliferation, chemotaxis and profibrotic effects, and further investigation demonstrated that the expression of target gene TGFβRII and its downstream SMADs proteins, especially phosphorylated protein p-SMAD2/3 was also notably down-regulated by miR-6766-3p. These findings unveiled that miR-6766-3p in 3D-hESC-Exosomes inactivated SMADs signaling by inhibiting TGFβRII expression, consequently attenuating stellate cell activation and suppressing liver fibrosis. ConclusionsOur results showed that miR-6766-3p in the 3D-hESC-Exosomes inactivates smads signaling by restraining TGFβRII expression, attenuated LX2 cell activation and suppressed liver fibrosis, suggesting that 3D-hESC-Exosome enriched-miR6766-3p is a novel anti-fibrotic therapeutics for treating chronic liver disease. These results also proposed a significant strategy that 3D-Exo could be used as natural nanoparticles to rescue liver injury via delivering antifibrotic miR-6766-3p.


2020 ◽  
Author(s):  
Xia Yao ◽  
Jing Wang ◽  
Jiajing Zhu ◽  
Xiaoli Rong

Abstract Background: Liver fibrosis resulting from a chronic liver injury is one of the significant causes of mortality. Stem cells-secreted secretome has been evaluated for overcoming the limitations of cell-based therapy in hepatic disease while maintaining its advantages over the current therapies. Methods: In this study, we investigated the effect of human fetal skin-derived stem cells (hFSSCs) secretome in the treatment of liver fibrosis. To determine the therapeutic potential of the hFSSCs secretome in liver fibrosis, we established the CCl4-induced liver fibrosis rat model, and we administered hFSSCs secretome in vivo. Moreover, we investigated the anti-fibrotic mechanism of hFSSCs secretome in hepatic stellate cells (HSCs). Results: Our results showed that hFSSCs secretome effectively reduced collagen content in the liver, and improved the liver function and promoted liver regeneration. Interestingly, we also found that hFSSCs secretome reduced liver fibrosis through suppressing the epithelial-mesenchymal transition (EMT) process. In addition, we found that hFSSC secretome inhibited the TGF-β1, Smad2, Smad3, and Collagen I expression, while we observed, increased Smad7 expression. Conclusions: In conclusion, our results suggest that hFSSCs secretome treatment could reduce CCl4-induced liver fibrosis via regulating the TGF-β/Smad signal pathway.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 338-338 ◽  
Author(s):  
Barbara Ghinassi ◽  
Leda Ferro ◽  
Stefan Kachala ◽  
Isabelle Riviere ◽  
Michel Sadelain ◽  
...  

Abstract Abstract 338 Ex vivo expanded erythroblasts (EBs) are red blood cell precursors with proliferative capacity that have the potential to serve as alternative transfusion product. In the present study, we investigated the biodistribution and persistence of human EBs expanded ex vivo from cord blood following intravenous administration to NOD/SCID/IL2Rγnull mice. In the first experiment, 107 EBs generated ex vivo from cord blood under Human Erythroid Massive Amplification (HEMA) culture conditions (Migliaccio G et al. Blood Cells Mol Dis. 2002;28:169) were labeled with CFSE and transfused via the tail vein into NOD/SCID/IL2Rγnull mice which had been bled (200 μL) 24 hrs earlier to increase erythropoietin (EPO) levels. The presence of human EBs in bone marrow (BM), spleen and blood of the transfused recipient mice was analyzed by flow cytometry for CSFE and human CD235a. At day 4, 1.5 – 5% of cells in BM and spleen of the animals were CD235apos but no human cells were detectable in blood. To clarify failure of human EBs to generate red blood cells in mice, a second cohort of mice was given 25×106 expanded EBs and sacrificed 4 days thereafter. Their tissues, including BM, liver and spleen, were examined by immunohistochemistry for expression of human markers. Human CD235apos cells were found in the spleen, representing up to 18% of total cells spleen cells of transfused recipients, but the cells were trapped inside larger CD235aneg cells, probably of murine origin. These results indicate that lodging of human EBs in the spleen, where they are probably destroyed by the macrophages, may represent a barrier to using mouse models as a surrogate assay for investigating transfused human EBs. To test this hypothesis, we analyzed the fate and biodistribution of human EBs into normal vs. splenectomized NOD/SCID/IL2Rγnull mice. Cell biodistribution was analyzed using bioluminescence imaging (BLI), following retroviral-mediated transfer of eGFP and the external Gaussia luciferase genes (Santos et al Nat Med 15: 338, 2009) into expanding cord blood-derived EBs. Cord blood-derived CD34pos cells were either expanded in HEMA culture (as control) or cultured for 3 days with TPO, SCF and FLT3L before retroviral transduction. After 3 days, the cells were cultured under HEMA conditions to induce EBs expansion. Mature EBs were detectable after 11 days of culture in the untransduced, control group and the cells expanded 67-fold. By contrast, transduced cord blood cells matured by day 5–7 and amplified only 24-fold (see Figure). Transduction efficiency, as reflected by GFP expression, was on the order of 32–50% in expanded EBs. All the recipient mice were bled 10 hrs before injection (200 μL). Half of them were splenectomized 24 hrs earlier. Mice were given 15×106 each expanded EBs together with 20 units of EPO and the cell biodistribution analyzed by imaging 24 hrs later (see Figure). In intact mice, BLI signal was virtually undetectable (other than in the tail). In contrast, in the splenectomized mice, significant signal levels were also observed in the body of the animals (see Figure). Four days after injection, mice were sacrificed and the presence of human CD235apos cells in the marrow, liver, spleen (intact animals only) and blood analyzed. CD235apos cells were detectable in the marrow (20%) and liver (6%) of the splenectomized mice while in intact animals they were mainly detected in spleen (15%). Detection of human red cells in blood, however, remained low in all the cases. Overall, we have established a model for the tracking and quantification of human EBs transfused into NOD/SCID/IL2Rγnull mice. This model will be very valuable to investigate the in vivo function and persistence of human EBs expanded under different conditions and thereby define the therapeutic potential of ex vivo generated human EBs derived from different stem cell sources. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sulaiman Shams ◽  
Sadia Mohsin ◽  
Ghazanfar Ali Nasir ◽  
Mohsin Khan ◽  
Shaheen N. Khan

Stem cells have opened a new avenue to treat liver fibrosis. We investigated in vitro and in vivo the effect of cytokine (HGF and FGF4) pretreated MSCs in reduction of CCl4liver injury. Mouse MSCs were pretreated with cytokines to improve their ability to reduce CCl4injury. In vitro we gave CCl4injury to mouse hepatocytes and cocultured it with untreated and cytokines pretreated MSCs. For in vivo study we labeled MSCs with PKH-26 and transplanted them into CCl4injured mice by direct injection into liver. In vitro data showed that cytokines pretreated MSCs significantly reduce LDH level and apoptotic markers in CCl4injured hepatocytes cocultured model. Furthermore the cytokines pretreated MSCs also improved cell viability and enhanced hepatic and antiapoptotic markers in injured hepatocytes cocultured model as compared to untreated MSCs. In vivo data in cytokines pretreated group demonstrated greater homing of MSCs in liver, restored glycogen storage, and significant reduction in collagen, alkaline phosphatase, and bilirubin levels. TUNEL assay and real time PCR also supported our hypothesis. Therefore, cytokines pretreated MSCs were shown to have a better therapeutic potential on reduction of liver injury. These results demonstrated the potential utility of this novel idea of cytokines pretreated MSCs for the treatment of liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document