scholarly journals Optimizing Parameters for Anticollision Systems between Adjacent Buildings under Earthquakes

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Nan Jin ◽  
Yong-qiang Yang

Adjacent buildings with anticollision system would have the possibility of pounding under earthquake if there is insufficient separate distance between the two buildings. The effect of pounding and earthquake characters on the optimum parameters for anticollision system is studied through time-history analysis method in this paper. Interstory displacement ratio, energy consumption ratio, and the total strain energy of the two buildings are considered as control variables. The results show that the pounding between adjacent buildings will reduce the range of optimum parameters, and earthquake characters also have effect on the selection of optimum parameters. Therefore, it is strongly recommended to input more than three ground motion records for a time-history analysis to get the optimum parameters considering the effect of pounding and earthquake characters.

2012 ◽  
Vol 28 (2) ◽  
pp. 667-688 ◽  
Author(s):  
Claudio A. Oyarzo-Vera ◽  
Graeme H. McVerry ◽  
Jason M. Ingham

A seismic zonation to be used in the selection of ground-motion records for time-history analysis of buildings in the North Island of New Zealand is presented. Both deaggregations of the probabilistic seismic hazard model and the seismological characteristics of the expected ground motions at different locations were considered in order to define the zonation. A profile of the records expected to apply within each zone according to the identified hazard scenarios is presented and suites of records are proposed for each zone, based on region-wide criteria, to be used in time-history analysis in the absence of site specific studies. A solution for structures with fundamental periods of between 0.4 and 2.0 seconds is proposed, considering a 500-year return period and two common site classes (C and D, according to the New Zealand Loadings Standard).


Author(s):  
Tomasz Falborsk ◽  
Natalia Lasowicz

The present paper presents the results of the numerical study designed to investigate the soil-structure flexibility effects on modal parameters (i.e. fundamental frequencies) and time-history analysis response (represented by the top relative displacements) of a 46.8 m high steel lattice tower subjected to a number of ground motions including also one mining tremor. In addition to the fixed-base condition, three different soil types (i.e. dense soil, stiff soil, and soft soil) were considered in this investigation. Site conditions were characterized by their average effective profile velocities, Poisson’s ratios, and finally mass densities. Soil-foundation flexibility was introduced using the spring-based approach, utilizing foundation springs and dashpots. The first step was to investigate the influence of different base conditions on modal parameters of the steel lattice tower. In the final part of the current study time-history analysis was performed using different two-component ground motion records (in two horizontal, mutually perpendicular directions). The results obtained indicate that modal parameters and dynamic response of the structure may be considerably affected by the soil-structure interaction effects. Therefore, the present paper confirms the necessity of utilizing soil-flexibility into numerical research.


2013 ◽  
Vol 40 (5) ◽  
pp. 411-426 ◽  
Author(s):  
Lan Lin ◽  
Nove Naumoski ◽  
Murat Saatcioglu ◽  
Simon Foo ◽  
Edmund Booth ◽  
...  

The selection of seismic motions is one of the most important issues for the time-history analysis of buildings. This paper discusses four different methods for obtaining spectrum-compatible acceleration time histories (i.e., accelerograms) of seismic motions. Based on these methods, four sets of accelerograms compatible with the design spectrum for Vancouver were selected for this study. These included (i) scaled real accelerograms, (ii) modified real accelerograms, (iii) simulated accelerograms, and (iv) artificial accelerograms. The selected sets were used as excitation motions in the nonlinear analysis of three reinforced concrete frame buildings designed for Vancouver. The buildings included a 4-storey, a 10-storey, and a 16-storey building, which can be considered representative of low-rise, medium-rise, and high-rise buildings, respectively. The storey shears, interstorey drifts, and curvature ductilities for beams and columns obtained from the analysis were used for the evaluation of the effects of the selected sets on the responses of the buildings. Based on the results from the analysis, scaled real accelerograms are recommended for use in time-history analysis of reinforced concrete frame buildings.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Nidiasari Jati Sunaryati Eem Ikhsan

Struktur rangka baja pemikul momen merupakan jenis struktur baja tahan gempa yang populer digunakan. Daktilitas struktur yang tinggi merupakan salah satu keunggulan struktur ini, sehingga mampu menahan deformasi inelastik yang besar. Dalam desain, penggunaan metode desain elastis berupa evaluasi non-linear static (Pushover analysis) maupun evaluasi non-linear analisis (Time History Analysis) masih digunakan sebagai dasar perencanaan meskipun perilaku struktur sebenarnya saat kondisi inelastik tidak dapat digambarkan dengan baik. Metode Performance-Based Plastic Design (PBPD) berkembang untuk melihat perilaku struktur sebenarnya dengan cara menetapkan terlebih dahulu simpangan dan mekanisme leleh struktur sehingga gaya geser dasar yang digunakan adalah sama dengan usaha yang dibutuhkan untuk mendorong struktur hingga tercapai simpangan yang telah direncanakan. Studi dilakukan terhadap struktur baja 5 lantai yang diberi beban gempa berdasarkan SNI 1726, 2012 dan berdasarkan metode PBPD. Hasil analisa menunjukkan bahwa struktur yang diberi gaya gempa berdasarkan metode PBPD mencapai simpangan maksimum sesuai simpangan rencana dan kinerja struktur yang dihasilkan lebih baik .


Author(s):  
Fatemeh Jalayer ◽  
Hossein Ebrahimian ◽  
Andrea Miano

AbstractThe Italian code requires spectrum compatibility with mean spectrum for a suite of accelerograms selected for time-history analysis. Although these requirements define minimum acceptability criteria, it is likely that code-based non-linear dynamic analysis is going to be done based on limited number of records. Performance-based safety-checking provides formal basis for addressing the record-to-record variability and the epistemic uncertainties due to limited number of records and in the estimation of the seismic hazard curve. “Cloud Analysis” is a non-linear time-history analysis procedure that employs the structural response to un-scaled ground motion records and can be directly implemented in performance-based safety-checking. This paper interprets the code-based provisions in a performance-based key and applies further restrictions to spectrum-compatible record selection aiming to implement Cloud Analysis. It is shown that, by multiplying a closed-form coefficient, code-based safety ratio could be transformed into simplified performance-based safety ratio. It is shown that, as a proof of concept, if the partial safety factors in the code are set to unity, this coefficient is going to be on average slightly larger than unity. The paper provides the basis for propagating the epistemic uncertainties due to limited sample size and in the seismic hazard curve to the performance-based safety ratio both in a rigorous and simplified manner. If epistemic uncertainties are considered, the average code-based safety checking could end up being unconservative with respect to performance-based procedures when the number of records is small. However, it is shown that performance-based safety checking is possible with no extra structural analyses.


Author(s):  
Fan Bu ◽  
Caifu Qian

In this paper, two finite element models are established for a super-large storage tank with or without a floating roof on the medium level. Time-history analysis with consideration of fluid-solid coupling for the deformation of tank wall and medium sloshing during or after an earthquake is performed with the emphasis on the effects of the floating roof. It is found that the upper part of tank is more sensitive to the earthquake action than the lower part. The wind girders and the reinforcing rings play a big role in limiting the radial deformation of the upper part of the tank wall. The floating roof has little effect on the tank wall deformation, but it is effective in suppressing the medium sloshing during the earthquake. After the earthquake, the radial deformation of the tank wall attenuates quickly, but the sloshing attenuation of the medium presents a slow progress and the floating roof inhibits the sloshing attenuation of the medium.


2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


2016 ◽  
Vol 858 ◽  
pp. 145-150
Author(s):  
Yu Liang Zhao ◽  
Zhao Dong Xu

This paper discussed an elastic-plastic time-history analysis on a structure with MR dampers based on member model, in which the elastoplastic member of the structure is assumed to be single component model and simulated by threefold line stiffness retrograde model. In order to obtain better control effect, Linear Quadratic Gaussian (LQG) control algorithm is used to calculate the optimal control force, and Hrovat boundary optimal control strategy is used to describe the adjustable damping force range of MR damper. The effectiveness of the MR damper based on LQG algorithm to control the response of the structure was investigated. The results from numerical simulations demonstrate that LQG algorithm can effectively improve the response of the structure against seismic excitations only with acceleration feedback.


Sign in / Sign up

Export Citation Format

Share Document