scholarly journals Damage Identification in Structures Based on Energy Curvature Difference of Wavelet Packet Transform

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Pengbo Wang ◽  
Qinghe Shi

Damage identification is of tremendous significance in engineering structures. One key issue in damage identification is to determine an index that is sensitive to the structural damage. Current damage identification indices are generally focused on dynamic characteristics such as the natural frequencies, modal shapes, frequency responses, or their mathematical combinations. In this study, based on the wavelet packet transform, we propose a novel index, the energy curvature difference (ECD) index, to identify the damage in structures. The ECD index is the summation of component energy curvature differences after a signal is decomposed using WPT. Moreover, two numerical examples are used to demonstrate the feasibility and validity of the proposed ECD index for damage identification. Stiffness reduction is employed to simulate the structural damage. The damage can be identified by the ECD index curve plot. The results of the examples indicate that the proposed ECD index is sensitive to low damage levels because even 5% stiffness reduction can be apparently identified. The proposed ECD index can be employed to effectively identify structural damage.

2006 ◽  
Vol 324-325 ◽  
pp. 205-208
Author(s):  
Qing Guo Fei ◽  
Ai Qun Li ◽  
Chang Qing Miao ◽  
Zhi Jun Li

This paper describes a study on damage identification using wavelet packet analysis and neural networks. The identification procedure could be divided into three steps. First, structure responses are decomposed into wavelet packet components. Then, the component energies are used to define damage feature and to train neural network models. Finally, in combination with the feature of the damaged structure response, the trained models are employed to determine the occurrence, the location and the qualification of the damage. The emphasis of this study is put on multi-damage case. Relevant issues are studied in detail especially the selection of training samples for multi-damage identification oriented neural network training. A frame model is utilized in the simulation cases to study the sampling techniques and the multi-damage identification. Uniform design is determined to be the most suitable sampling technique through simulation results. Identifications of multi-damage cases of the frame including different levels of damage at various locations are investigated. The results show that damages are successfully identified in all cases.


2007 ◽  
Vol 129 (6) ◽  
pp. 771-783 ◽  
Author(s):  
L. J. Jiang ◽  
J. Tang ◽  
K. W. Wang

The concept of using sensitivity-enhancing feedback control to improve the performance of frequency-shift-based structural damage identification has been recently explored. In previous studies, however, the feedback controller is designed to alter only the closed-loop eigenvalues, and the effect of closed-loop eigenvectors on the sensitivity enhancement performance has not been considered. In this research, it is shown that the sensitivity of the natural frequency shift to the damage in a multi-degree-of-freedom structure can be significantly influenced by the placement of both the eigenvalues and the eigenvectors. A constrained optimization problem is formulated to find the optimal assignment of both the closed-loop eigenvalues and eigenvectors, and then an optimal sensitivity-enhancing control is designed to achieve the desired closed-loop eigenstructure. Another advantage of this scheme is that the dataset of frequency measurement for damage identification can be enlarged by utilizing a series of closed-loop controls, which can be realized by activating different combinations of actuators in the system. Therefore, by using this proposed idea of multiple sensitivity-enhancing feedback controls, we can simultaneously address the two major limitations of frequency-shift-based damage identification: the low sensitivity of frequency shift to damage effects and the deficiency of frequency measurement data. A series of case studies are performed. It is demonstrated that the sensitivity of natural frequency shift to stiffness reduction can be significantly enhanced by using the designed sensitivity-enhancing feedback control, where the optimal placement of closed-loop eigenvectors plays a very important role. It is further verified that such sensitivity enhancement can directly benefit the damage identification accuracy and robustness.


2020 ◽  
pp. 107754632094545
Author(s):  
Shike Zhang ◽  
Huajiang Ouyang

For engineering structures, there is a strong need to assign natural frequencies to achieve desired dynamic performance. This study proposes a receptance-based frequency assignment method for assembled structures. Very often, the substructures involved are not allowed or are difficult to change. This method uses the links between the substructures as targets of structural modifications and determines the structural properties of the links that assign the desired frequencies cast as an optimisation problem. These links could be either simple discrete structural components such as masses and springs or complex continuous structures. Only a few receptances of the substructures are required in this method, which can be measured accurately and easily in practice. Two numerical examples are presented to show the validity of this method and its strength in dealing with complex assembled structures.


2014 ◽  
Vol 1006-1007 ◽  
pp. 34-37 ◽  
Author(s):  
Hong Ni ◽  
Ming Hui Li ◽  
Xi Zuo

This paper first describes the importance of structural damage identification and diagnosis in civil engineering, and introduces domestic and foreign status of damage identification and diagnosis methods, and on the basis of this, it also introduces all kinds of methods for damage identification and diagnosis of civil engineering structures, and finally puts forward the development direction of civil engineering structure damage identification and diagnosis.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ivana Mekjavić

The present research aims to develop an effective and applicable structural damage detection method. A damage identification approach using only the changes of measured natural frequencies is presented. The structural damage model is assumed to be associated with a reduction of a contribution to the element stiffness matrix equivalent to a scalar reduction of the material modulus. The computational technique used to identify the damage from the measured data is described. The performance of the proposed technique on numerically simulated real concrete girder bridge is evaluated using imposed damage scenarios. To demonstrate the applicability of the proposed method by employing experimental measured natural frequencies this technique is applied for the first time to a simply supported reinforced concrete beam statically loaded incrementally to failure. The results of the damage identification procedure show that the proposed method can accurately locate the damage and predict the extent of the damage using high-frequency (here beyond the 4th order) vibrational responses.


2020 ◽  
Vol 10 (8) ◽  
pp. 2869 ◽  
Author(s):  
Zhenpeng Wang ◽  
Minshui Huang ◽  
Jianfeng Gu

To study the variations in modal properties of a reinforced concrete (RC) slab (such as natural frequencies, mode shapes and damping ratios) under the influence of ambient temperature, a laboratory RC slab is monitored for over a year, the simple linear regression (LR) and autoregressive with exogenous input (ARX) models between temperature and frequencies are established and validated, and a damage identification based on particle swarm optimization (PSO) is utilized to detect the assumed damage considering temperature effects. Firstly, the vibration testing is performed for one year and the variations of natural frequencies, mode shapes and damping ratios under different ambient temperatures are analyzed. The obtained results show that the change of ambient temperature causes a major change of natural frequencies, which, on the contrary, has little effect on damping ratios and modal shapes. Secondly, based on a theoretical derivation analysis of natural frequency, the models are determined from experimental data on the healthy structure, and the functional relationship between temperature and elastic modulus is obtained. Based on the monitoring data, the LR model and ARX model between structural elastic modulus and ambient temperature are acquired, which can be used as the baseline of future damage identification. Finally, the established ARX model is validated based on a PSO algorithm and new data from the assumed 5% uniform damage and 10% uniform damage are compared with the models. If the eigenfrequency exceeds the certain confidence interval of the ARX model, there is probably another cause that drives the eigenfrequency variations, such as structural damage. Based on the constructed ARX model, the assumed damage is identified accurately.


2009 ◽  
Vol 413-414 ◽  
pp. 71-78
Author(s):  
Xiao Qiang Chen ◽  
Hong Ping Zhu ◽  
Dan Sheng Wang

In this paper, a new time-domain method for detecting structural local damage has been developed, which is based on the measured strain signals. The “pseudo strain energy density (PSED)” is defined and used to build two major damage indexes, the “average pseudo strain energy density” (APSED) and the “average pseudo strain energy density changing rate” (APSEDR). A probability and mathematical statistics technique is utilized to derive a standardized damage index. Afterwards, these indexes are used to establish the damage identification strategies for beam structures and plate structures respectively. Furthermore, the wavelet packet transform is used to pre-process the measured dynamic strain signals. Then, the effectivity of the new damage identification method is confirmed by numerical simulations. Finally, a laboratory beam model experiment is conducted to verify this method examine the feasibility and applicability of the new method.


2016 ◽  
Vol 20 (2) ◽  
pp. 257-271 ◽  
Author(s):  
Qingxia Zhang ◽  
Łukasz Jankowski

A damage identification approach is presented using substructure virtual distortion method which takes the advantage of the fast structural reanalysis technique of virtual distortion method. The formulas of substructure virtual distortion method are deduced in frequency domain, and then the frequency response function of the damaged structure is constructed quickly via the superposition of the frequency response function of the intact structure and the frequency responses caused by the damage-coupling virtual distortions of the substructures. The structural damage extents are identified using the measured modal parameters. Two steps are adopted to increase the efficiency of optimization: the modals of finite element model are estimated quickly from the fast constructed frequency response function during the optimization and the primary distortions of the substructures are extracted by contribution analysis to further reduce the computational work. A six-story frame numerical model and an experiment of a cantilever beam are carried out, respectively, to verify the efficiency and accuracy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document