scholarly journals MEMS Inertial Sensor for Strata Stability Monitoring in Underground Mining: An Experimental Study

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Kaizhi Zhang ◽  
Songtao Ji ◽  
Yang Zhang ◽  
Jie Zhang ◽  
Ruikai Pan

To investigate the fracture and deformation characteristics of the strata in underground mining as well as the effectiveness and sensitivity of the MEMS inertial sensor for strata stability monitoring, a low cost, small size, and easy implementation inertial MEMS sensor module was redeveloped. Sensor modules were installed on roof strata in an underground mining equivalent material simulation experiment. Then, monitoring signal of two modules near the middle and end section of caving strata was processed. The processed signal presents stepped change, and each step consists a vibration stage and a stable stage. Further analysis of each stage, a strategy to estimate the deformation and stability of strata, can be reached: the duration of each vibration stage and complete stage with rising trend indicates that the deformation of strata is growing to the ultimate state. In this study, this method could recognize the destructive deformation of strata at least 1 hour before the strata caving.

2007 ◽  
Vol 60 (2) ◽  
pp. 233-245 ◽  
Author(s):  
Xiaoji Niu ◽  
Sameh Nasser ◽  
Chris Goodall ◽  
Naser El-Sheimy

Recent navigation systems integrating GPS with Micro-Electro-Mechanical Systems (MEMS) Inertial Measuring Units (IMUs) have shown promising results for several applications based on low-cost devices such as vehicular and personal navigation. However, as a trend in the navigation market, some applications require further reductions in size and cost. To meet such requirements, a MEMS full IMU configuration (three gyros and three accelerometers) may be simplified. In this context, different partial IMU configurations such as one gyro plus three accelerometers or one gyro plus two accelerometers could be investigated. The main challenge in this case is to develop a specific navigation algorithm for each configuration since this is a time-consuming and costly task. In this paper, a universal approach for processing any MEMS sensor configuration for land vehicular navigation is introduced. The proposed method is based on the assumption that the omitted sensors provide relatively less navigation information and hence, their output can be replaced by pseudo constant signals plus noise. Using standard IMU/GPS navigation algorithms, signals from existing sensors and pseudo signals for the omitted sensors are processed as a full IMU. The proposed approach is tested using land-vehicle MEMS/GPS data and implemented with different sensor configurations. Compared to the full IMU case, the results indicate the differences are within the expected levels and that the accuracy obtained meets the requirements of several land-vehicle applications.


2010 ◽  
Vol 18 (6) ◽  
Author(s):  
Sheng-Chih Shen ◽  
Chia-Jung Chen ◽  
Hsin-Jung Huang

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Daniel Roetenberg ◽  
Claudia Höller ◽  
Kevin Mattmüller ◽  
Markus Degen ◽  
John H. Allum

Objective. To investigate whether a microelectromechanical system (MEMS) inertial sensor module is as accurate as fiber-optic gyroscopes when classifying subjects as normal for clinical stance and gait balance tasks. Methods. Data of ten healthy subjects were recorded simultaneously with a fiber-optic gyroscope (FOG) system of SwayStar™ and a MEMS sensor system incorporated in the Valedo® system. Data from a sequence of clinical balance tasks with different angle and angular velocity ranges were assessed. Paired t-tests were performed to determine significant differences between measurement systems. Cohen’s kappa test was used to determine the classification of normal balance control between the two sensor systems when comparing the results to a reference database recorded with the FOG system. Potential cross-talk errors in roll and pitch angles when neglecting yaw axis rotations were evaluated by comparing 2D FOG and 3D MEMS recordings. Results. Statistically significant (α=0.05) differences were found in some balance tasks, for example, “walking eight tandem steps” and various angular measures (p<0.03). However, these differences were within a few percent (<2.7%) of the reference values. Tasks with high dynamic velocity ranges showed significant differences (p=0.002) between 2D FOG and 3D MEMS roll angles but no difference between 2D FOG and 2D MEMS roll angles. An almost perfect agreement could be obtained for both 2D FOG and 2D MEMS (κ=0.97) and 2D FOG and 3D MEMS measures (κ=0.87) when comparing measurements of all subjects and tasks. Conclusion. MEMS motion sensors can be used for assessing balance during clinical stance and gait tasks. MEMS provides measurements comparable to values obtained with a highly accurate FOG. When assessing pitch and roll trunk sway measures without accounting for the effect of yaw, it is recommended to use angle and angular velocity measures for stance, and only angular velocity measures for gait because roll and pitch velocity measurements are not influenced by yaw rotations, and angle errors are low for stance.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2480
Author(s):  
Isidoro Ruiz-García ◽  
Ismael Navarro-Marchal ◽  
Javier Ocaña-Wilhelmi ◽  
Alberto J. Palma ◽  
Pablo J. Gómez-López ◽  
...  

In skiing it is important to know how the skier accelerates and inclines the skis during the turn to avoid injuries and improve technique. The purpose of this pilot study with three participants was to develop and evaluate a compact, wireless, and low-cost system for detecting the inclination and acceleration of skis in the field based on inertial measurement units (IMU). To that end, a commercial IMU board was placed on each ski behind the skier boot. With the use of an attitude and heading reference system algorithm included in the sensor board, the orientation and attitude data of the skis were obtained (roll, pitch, and yaw) by IMU sensor data fusion. Results demonstrate that the proposed IMU-based system can provide reliable low-drifted data up to 11 min of continuous usage in the worst case. Inertial angle data from the IMU-based system were compared with the data collected by a video-based 3D-kinematic reference system to evaluate its operation in terms of data correlation and system performance. Correlation coefficients between 0.889 (roll) and 0.991 (yaw) were obtained. Mean biases from −1.13° (roll) to 0.44° (yaw) and 95% limits of agreements from 2.87° (yaw) to 6.27° (roll) were calculated for the 1-min trials. Although low mean biases were achieved, some limitations arose in the system precision for pitch and roll estimations that could be due to the low sampling rate allowed by the sensor data fusion algorithm and the initial zeroing of the gyroscope.


Author(s):  
Charles Atombo ◽  
Emmanuel Gbey ◽  
Apevienyeku Kwami Holali

Abstract Traffic accidents on highways are attributed mostly to the "invisibility" of oncoming traffic and road signs. "Speeding" also causes drivers to reduce the effective radius of the vehicle path in the curve, thus trespassing into the lane of the oncoming traffic. The main aim of this paper was to develop a multisensory obstacle-detection device that is affordable, easy to implement and easy to maintain to reduce the risk of road accidents at blind corners. An ultrasonic sensor module with a maximum measuring angle of 15° was used to ensure that a significant portion of the lane was detected at the blind corner. The sensor covered a minimum effective area of 0.5 m2 of the road for obstacle detection. Yellow light was employed to signify caution while negotiating the blind corner. Two photoresistors (PRs) were used as sensors because of the limited number of pins on the microcontroller (Arduino Uno). However, the device developed for this project achieved obstacle detection at blind corners at relatively low cost and can be accessed by all road users. In real-world applications, the use of piezoelectric accelerometers (vibration sensors) instead of PR sensors would be more desirable in order to detect not only cars but also two-wheelers.


2012 ◽  
Vol 61 (5) ◽  
pp. 1231-1236 ◽  
Author(s):  
Bruno Ando ◽  
Salvatore Baglio ◽  
Angela Beninato

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1297
Author(s):  
Viktor Skrickij ◽  
Eldar Šabanovič ◽  
Dachuan Shi ◽  
Stefano Ricci ◽  
Luca Rizzetto ◽  
...  

Railway infrastructure must meet safety requirements concerning its construction and operation. Track geometry monitoring is one of the most important activities in maintaining the steady technical conditions of rail infrastructure. Commonly, it is performed using complex measurement equipment installed on track-recording coaches. Existing low-cost inertial sensor-based measurement systems provide reliable measurements of track geometry in vertical directions. However, solutions are needed for track geometry parameter measurement in the lateral direction. In this research, the authors developed a visual measurement system for track gauge evaluation. It involves the detection of measurement points and the visual measurement of the distance between them. The accuracy of the visual measurement system was evaluated in the laboratory and showed promising results. The initial field test was performed in the Vilnius railway station yard, driving at low velocity on the straight track section. The results show that the image point selection method developed for selecting the wheel and rail points to measure distance is stable enough for TG measurement. Recommendations for the further improvement of the developed system are presented.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 858 ◽  
Author(s):  
Timothy A. Vincent ◽  
Yuxin Xing ◽  
Marina Cole ◽  
Julian W. Gardner

A new signal processing technique has been developed for resistive metal oxide (MOX) gas sensors to enable high-bandwidth measurements and enhanced selectivity at PPM levels (<50 PPM VOCs). An embedded micro-heater is thermally pulsed from 225 to 350 °C, which enables the chemical reactions in the sensor film (e.g., SnO2, WO3, NiO) to be extracted using a fast Fourier transform. Signal processing is performed in real-time using a low-cost microcontroller integrated into a sensor module. The approach enables the remove of baseline drift and is resilient to environmental temperature changes. Bench-top experimental results are presented for 50 to 200 ppm of ethanol and CO, which demonstrate our sensor system can be used within a mobile robot.


Author(s):  
Tatsuya Koga ◽  
Katsuyuki Machida ◽  
Yoshihiro Miyake ◽  
Kazuya Masu ◽  
Takashi Ichikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document