scholarly journals Synaptic Plasticity of Human Umbilical Cord Mesenchymal Stem Cell Differentiating into Neuron-like Cells In Vitro Induced by Edaravone

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yunpeng Shi ◽  
Chengrui Nan ◽  
Zhongjie Yan ◽  
Liqiang Liu ◽  
Jingjing Zhou ◽  
...  

Objective. The human umbilical cord mesenchymal stem cells (hUMSCs) are characterized with the potential ability to differentiate to several types of cells. Edaravone has been demonstrated to prevent the hUMSCs from the oxidative damage, especially its ability in antioxidative stress. We hypothesized that Edaravone induces the hUMSCs into the neuron-like cells. Methods. The hUMSCs were obtained from the human umbilical cord tissue. The differentiation of hUMSCs was induced by Edaravone with three different doses: 0.65 mg/ml, 1.31 mg/ml, and 2.62 mg/ml. Flow cytometry was used to detect the cell markers. Protein and mRNA levels of nestin, neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP) were detected by Western blot and RT-PCR. The expression of synaptophysin (SYN), growth-associated protein 43 (GAP43), and postsynaptic density 95 (PSD95) was detected by Real-Time PCR. Results. As long as the prolongation of the culture, the hUMSCs displayed with the long strips or long fusiform to fat and then characterized with the radial helix growth. By using flow cytometry, the cultured hUMSCs at the 3rd, 5th, and 10th passages were expressed with CD73, CD90, and CD105 but not CD11b, CD19, CD34, CD45, and HLA-DR. Most of the hUMSCs cultured with Edaravone exhibited typical nerve-immediately characters including the cell body contraction, increased refraction, and protruding one or more elongated protrusions, which were not found in the control group without addition of Edaravone. NSE, nestin, and GFAP were positive in these neuron-like cells. Edaravone dose-dependently increased expression levels of NSE, nestin, and GFAP. After replacement of maintenance fluid, neuron-like cells continued to be cultured for five days. These neuron-like cells were positive for SYN, PSD95, and GAP43. Conclusion. Edaravone can dose-dependently induce hUMSCs to differentiate into neuron-like cells that expressed the neuronal markers including NSE, nestin, and GFAP and synaptic makers such as SYN, PSD95, and GAP43.

2014 ◽  
Vol 92 (6) ◽  
pp. 467-475 ◽  
Author(s):  
Fang-Tian Xu ◽  
Hong-Mian Li ◽  
Qing-Shui Yin ◽  
Shi-En Cui ◽  
Da-Lie Liu ◽  
...  

Aims: To investigate whether ginsenoside Rg1 can promote neural phenotype differentiation of human adipose-derived stem cells (hASCs) in vitro. Methods: hASCs were isolated from lipo-aspirates, and characterized by specific cell markers and multilineage differentiation capacity after culturing to the 3rd passage. Cultured hASCs were treated with neural inductive media alone (group A, control) or inductive media plus 10, 50, or 100 μg/mL ginsenoside Rg1 (groups B, C, and D, respectively). Cell proliferation was assessed by CCK-8 assay. Neuron specific enolase (NSE) and microtubule-associated protein-2 (MAP-2) levels were measured by Western blot. mRNA levels of growth associated protein-43 (GAP-43), neural cell adhesion molecule (NCAM), and synapsin-1 (SYN-1) were determined by real-time PCR. Results: Ginsenoside Rg1 promoted the proliferation of hASCs (groups B, C, and D) and resulted in higher expression of NSE and MAP-2 compared with the control group. Gene expression levels of GAP-43, NCAM, and SYN-1 in the test groups were higher than that in thw control. The results displayed a dose-dependent effect of ginsenoside Rg1 on cell proliferation and neural phenotype differentiation. Conclusion: This study indicated that ginsenoside Rg1 promotes cell proliferation and neural phenotype differentiation of hASCs in vitro, suggesting a potential use for hASCs in neural regeneration medicine.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunjie Xu ◽  
Jing Zhao ◽  
Qiuyue Li ◽  
Lin Hou ◽  
Yan Wang ◽  
...  

Abstract Background Silicosis is an occupational respiratory disease caused by long-term excessive silica inhalation, which is most commonly encountered in industrial settings. Unfortunately, there is no effective therapy to delay and cure the progress of silicosis. In the recent years, stem cell therapy has emerged as an attractive tool against pulmonary fibrosis (PF) owing to its unique biological characteristics. However, the direct use of stem cells remains limitation by many risk factors for therapeutic purposes. The exclusive utility of exosomes secreted from stem cells, rather than cells, has been considered a promising alternative to overcome the limitations of cell-based therapy while maintaining its advantages. Methods and results In this study, we first employed a three-dimensional (3D) dynamic system to culture human umbilical cord mesenchymal stem cell (hucMSC) spheroids in a microcarrier suspension to yield exosomes from serum-free media. Experimental silicosis was induced in C57BL/6J mice by intratracheal instillation of a silica suspension, with/without exosomes derived from hucMSC (hucMSC-Exos), injection via the tail vein afterwards. The results showed that the gene expression of collagen I (COL1A1) and fibronectin (FN) was upregulated in the silica group as compared to that in the control group; however, this change decreased with hucMSC-Exo treatment. The value of FEV0.1 decreased in the silica group as compared to that in the control group, and this change diminished with hucMSC-Exo treatment. These findings suggested that hucMSC-Exos could inhibit silica-induced PF and regulate pulmonary function. We also performed in vitro experiments to confirm these findings; the results revealed that hucMSC-Exos decreased collagen deposition in NIH-3T3 cells exposed to silica. Conclusions Taken together, these studies support a potential role for hucMSC-Exos in ameliorating pulmonary fibrosis and provide new evidence for improving clinical treatment induced by silica.


2016 ◽  
Vol 38 (1) ◽  
pp. 401-414 ◽  
Author(s):  
Wei Wang ◽  
Xueyong Liu ◽  
Wei Wang ◽  
Jinghua Li ◽  
Yuanyuan Li ◽  
...  

Background/Aims: Indoxyl sulfate, an important protein-bound uremic toxin, can damage stem cells, thus hampering stem cell-based regenerative medicine approaches targeting chronic kidney diseases (CKD). Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are thought to have promising clinical application because of their high proliferative potential and ease of isolation than MSCs from other sources. In the present study, we aimed to determine the harmful effects of indoxyl sulfate on the phenotype and functional potential of hUC-MSCs in vitro. Methods: The toxicity and cell viability was examined by Trypan blue exclusion and MTT assay. The cellular surface markers and the percentage of apoptotic cells by Annexin-V/PI staining were analyzed by flow cytometry. Proliferation was evaluated based on cell number counting and Ki-67 immunostaining. Cell senescence was measured using senescence-associated β-Galactosidase activity. The ability to stimulate the development of CD4+CD25+FoxP3+ regulatory T cells was assessed by incubating hUC-MSCs with peripheral blood mononuclear cells from the healthy volunteers. Results: Our results demonstrated that the immunophenotype of hUC-MSCs was not affected by indoxyl sulfate flow cytometry. However, a significant decrease in cell numbers and fraction of Ki-67 positive proliferating cells, along with a significant increase in cellular senescence were detected in hUC-MSCs after exposure to indoxyl sulfate. Additionally, their ability to stimulate CD4+CD25+FoxP3+ regulatory T cell production was compromised when hUC-MSCs were pretreated with indoxyl sulfate. Conclusion: Taken together, our study clearly demonstrated that the molecular alterations and functional incompetence in hUC-MSCs under the challenge of indoxyl sulfate in vitro.


2018 ◽  
Vol 5 (4) ◽  
pp. 31 ◽  
Author(s):  
Maryam Samareh Salavati Pour ◽  
Fatemeh Hoseinpour Kasgari ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Roohollah Mirzaee Khalilabadi

Introduction: Mesenchymal stem cells (MSCs) are widely studied due to their self- renewal potential and capacity to differentiate into multiple tissues. However, they have a limited life span of several divisions in vitro, which alters various cellular characteristics and reduces their application. Aim: We evaluated the effect of platelet-derived microparticles on gene expression of hTERT, one of the main factors involved in aging and cell longevity. Materials and methods: Umbilical cord MSCs were used for this study. Cells were characterized by evaluating morphology via inverted microscope and identifying associated surface markers using flow cytometry. Platelet-derived microparticles were prepared by centrifuging platelet bags at varying speeds, and their concen- trations were determined by Bradford assay. At 30% confluency, MSCs were treated with 50 μg/mL of microparticles for five days. Then, RNA was extracted and cDNA was synthesized. Quantitative expression of hTERT was assessed using real-time polymerase chain reaction (PCR). Results: Fibroblast-like cells were isolated from umbilical cord tissue and MSCs were identified by the presence of mesenchymal surface markers via flow cytometry. Real- time PCR showed that gene expression of hTERT increased by more than three times when treated with platelet-derived microparticles, in comparison to expression of the control group. Conclusion: We concluded that platelet-derived microparticles may be a potentially safe and effective method to increase hTERT gene expression in MSCs, ultimately prolonging their life span in vitro. 


2019 ◽  
Vol 52 (1) ◽  
pp. 36
Author(s):  
Nike Hendrijantini

Background: Mesenchymal stem cells (MSCs) and scaffold combination constitute a promising approach currently adopted for tissue engineering. Umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are easily obtained and non-invasive. Gelatine and alginate constitute a biocompatible natural polymer scaffold. At present, a cytotoxicity comparison of gelatine and alginate to hUC-MSCs is not widely conducted Purpose: This study aimed to compare the cytotoxicity of gelatine and alginate in hUC-MSCs in vitro. Methods: Isolation and culture were performed on hUC-MSCs derived from healthy full-term neonates. Flow Cytometry CD90, CD105 and CD73 phenotype characterization was performed in passage 4. 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay was performed to measure the cytotoxicity. The three sample groups were: (T1) hUC-MSCs with α-MEM (alpha-minimum essential medium) solution as control; (T2) hUC-MSCs with gelatine; (T3) hUC-MSCs with alginate Results: Flow cytometry of hUC-MSCs displayed positive CD90, CD105 and CD73 surface markers. Gelatine and alginate had no effect on the viability of hUC-MSCs and no statistically significant difference (p>0.05) of cytotoxicity between gelatine and alginate to hUC-MSCs. Conclusion: Gelatine and alginate proved to be non-toxic to hUC-MSCs in vitro.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4703-4703
Author(s):  
Juan Guo ◽  
Xiao Li ◽  
Chunkang Chang

Abstract Abstract 4703 Objective: The purpose of this study was to investigate the therapeutic potential of Human umbilical cord mesenchymal stem cells (HUCMSCs) from normal donors for preventing acute GVHD following allogeneic bone marrow transplantation (BMT). Methods: In this study, a new method of separating and culturing HUCMSCs was used. The human umbilical cord tissue was digested by collagenase II for 2h. And after being passaged to P3, more HUCMSCs could be obtained. In the control group, after being lethally irradiated, DBA/2(H-2Kd) mice were transferred bone marrow (BM) and splenocytes (SC) from C57BL/6 (H-2Kb) mice. Recipients in the HUCMSCs-treated group were adoptive transferred HUCMSCs, BM and SC at day 0 and were transferred only HUCMSCs at day 3 again. The two groups were compared in weight, survival, histopathological specimens, lymphocyte subgroups and serum cytokine analysis. Results: In vitro, IFN-γ treated HUCMSCs have a strong inhibitory effect on the proliferation of CD4 + T cells (P<0.05), but untreated HUCMSCs cannot obviously inhibit the proliferation of CD4 + T cells (P>0.05). IDO is involved in the immunosuppression of HUCMSCs. In the HUCMSCs-treated group, 50% of the mice survived over 30 days after BMT, but in the control group all mice died within 18 days. The mice treated with HUMSCs exhibited light symptoms of aGVHD after day 14. There were higher IFN-γ and IL-12 levels by day 7 in serum of mice that received HUCMSCs compared to those without HUCMSCs-treatment, while the IL-4 levels showed no significant difference between the two groups. The proportion of CD3+NK1.1+NKT cells in splenocytes of HUCMSCs-treated group is higher in day 21 compared with in day 7. Conclusion: Using the new method of digesting human umbilical cord tissue by collagenase II for 2h, we obtained stable and pure HUCMSCs. IDO is involved in the immunosuppression of HUCMSCs. After the xenogeneic transplantation of HUCMSCs to the aGVHD model of mice, HUCMSCs can regulate cytokines such as IFN-γ, IL-12 to increase CD3+NK1.1+NKT cells. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Li Guo ◽  
Liang Wang ◽  
Li Wang ◽  
Shi Yun-peng ◽  
Jing-jing Zhou ◽  
...  

Objective. Human umbilical cord mesenchymal stem cells (hUC-MSCs) potentially differentiate to various types of cells including neuron-like cells. The natural polyphenol resveratrol benefits patients with many diseases including ischemic brain injury. We hypothesize that resveratrol induces differentiation of hUC-MSCs into neuron-like cells. Methods. Flow cytometry was used to determine the surface antigens in different stage of hUC-MSCs (P2, P5, and P10). Nestin, neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP) were detected by immunocytochemistry, Western blotting, and real time RT-PCT. The cultured hUC-MSCs were treated with resveratrol at different concentrations (0, 7.5, 15.0, and 30.0 mg/L). Nestin, GFAP, and NSE protein and mRNA were measured at posttreatment time points of 2 h, 4 h, 6 h, 12 h, and 24 h. Results. Neuron-like cells were found in hUC-MSCs treated by resveratrol at concentrations of 15.0 and 30.0 mg/L, but not in hUC-MSCs treated with vehicle and 7.5 mg/L resveratrol. Furthermore, immunocytochemical staining revealed that nestin and NSE immunoreactivities were positive in resveratrol-treated hUC-MSCs at concentrations of 15.0 and 30.0 mg/L. Resveratrol treatment significantly increased nestin and NSE protein and mRNA levels 4 h after the treatment. However, resveratrol treatment did not change GFAP immunoreactivities and protein and mRNA expression levels in cultured hUC-MSCs. Conclusions. Taken together, resveratrol treatment induces a differentiation of hUC-MSCs into neuron-like cells at relatively high concentrations.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Fei Wang ◽  
Xiao-Xia Su ◽  
Yu-Cheng Guo ◽  
Ang Li ◽  
Yin-Cheng Zhang ◽  
...  

In the preliminary study, we have found an excellent osteogenic property of nanohydroxyapatite/chitosan/poly(lactide-co-glycolide) (nHA/CS/PLGA) scaffolds seeded with human umbilical cord mesenchymal stem cells (hUCMSCs)in vitroand subcutaneously in the nude mice. The aim of this study was to further evaluate the osteogenic capacity of nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice. Totally 108 nude mice were included and divided into 6 groups: PLGA scaffolds + hUCMSCs; nHA/PLGA scaffolds + hUCMSCs; CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds without seeding; the control group (no scaffolds) (n=18). The scaffolds were implanted into the calvarial defects of nude mice. The amount of new bones was evaluated by fluorescence labeling, H&E staining, and Van Gieson staining at 4 and 8 weeks, respectively. The results demonstrated that the amount of new bones was significantly increased in the group of nHA/CS/PLGA scaffolds seeded with hUCMSCs (p<0.01). On the basis of previous studiesin vitroand in subcutaneous implantation of the nude mice, the results revealed that the nHA and CS also enhanced the bone regeneration by nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice at early stage.


Sign in / Sign up

Export Citation Format

Share Document