scholarly journals Lagrangian Dual Decomposition for Joint Resource Allocation Optimization Problem in OFDMA Downlink Networks

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Li-Jun Jia ◽  
Yu-Cheng He ◽  
Dong-Hua Chen ◽  
Lin Zhou

This paper proposes an efficient method for joint power and subcarrier allocation in a multicell multiuser OFDMA downlink network. The joint optimization problem is formulated with the objective of maximizing the energy efficiency subject to the constraints on the quality of service in sum transmission rates for each cell and the total transmit power for the network. Due to intercell cochannel interferences and multiple variable coupling, the problem is intractable in its original form. To relax the difficulties in coordinating cochannel interferences, we introduce the tolerable interferences constraints for interference channels. To cope with the multiple variable coupling, we decompose the joint optimization problem into two iterative processes of user scheduling and a parametric convex optimization problem, where the energy efficiency is treated as the parameter and approached by bisection search. Then, by double dual decomposition, the parametric convex problem is transformed into Lagrangian dual problems at two levels of cells and subcarriers, and a decentralized solution is obtained in closed form. Based on the reformulations, an iterative subgradient algorithm is presented for approaching the joint optimization problem with acceptable complexity. Computer simulations are conducted to validate the proposed algorithm and examine the effects of various system parameters.

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4799
Author(s):  
Zefang Lin ◽  
Hui Song ◽  
Daru Pan

Device-to-device (D2D) communication, as one of the promising candidates for the fifth generation mobile network, can afford effective service of new mobile applications and business models. In this paper, we study the resource management strategies for D2D communication underlying the cellular networks. To cater for green communications, our design goal is to the maximize ergodic energy efficiency (EE) of all D2D links taking into account the fact that it may be tricky for the base station (BS) to receive all the real-time channel state information (CSI) while guaranteeing the stability and the power requirements for D2D links. We formulate the optimization problem which is difficult to resolve directly because of its non-convex nature. Then a novel maximum weighted ergodic energy efficiency (MWEEE) algorithm is proposed to solve the formulated optimization problem which consists of two sub-problems: the power control (PC) sub-problem which can be solved by employing convex optimization theory for both cellular user equipment (CUE) and D2D user equipment (DUE) and the channel allocation (CA) sub-problem which can be solved by obtaining the weighted allocation matrix. In particular, we shed light into the impact on EE metric of D2D communication by revealing the nonlinear power relationship between CUE and DUE and taking the QoS of CUEs into account. Furthermore, simulation results show that our proposed algorithm is superior to the existing algorithms.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-20
Author(s):  
Serena Wang ◽  
Maya Gupta ◽  
Seungil You

Given a classifier ensemble and a dataset, many examples may be confidently and accurately classified after only a subset of the base models in the ensemble is evaluated. Dynamically deciding to classify early can reduce both mean latency and CPU without harming the accuracy of the original ensemble. To achieve such gains, we propose jointly optimizing the evaluation order of the base models and early-stopping thresholds. Our proposed objective is a combinatorial optimization problem, but we provide a greedy algorithm that achieves a 4-approximation of the optimal solution under certain assumptions, which is also the best achievable polynomial-time approximation bound. Experiments on benchmark and real-world problems show that the proposed Quit When You Can (QWYC) algorithm can speed up average evaluation time by 1.8–2.7 times on even jointly trained ensembles, which are more difficult to speed up than independently or sequentially trained ensembles. QWYC’s joint optimization of ordering and thresholds also performed better in experiments than previous fixed orderings, including gradient boosted trees’ ordering.


Author(s):  
Tianqi Jing ◽  
Shiwen He ◽  
Fei Yu ◽  
Yongming Huang ◽  
Luxi Yang ◽  
...  

AbstractCooperation between the mobile edge computing (MEC) and the mobile cloud computing (MCC) in offloading computing could improve quality of service (QoS) of user equipments (UEs) with computation-intensive tasks. In this paper, in order to minimize the expect charge, we focus on the problem of how to offload the computation-intensive task from the resource-scarce UE to access point’s (AP) and the cloud, and the density allocation of APs’ at mobile edge. We consider three offloading computing modes and focus on the coverage probability of each mode and corresponding ergodic rates. The resulting optimization problem is a mixed-integer and non-convex problem in the objective function and constraints. We propose a low-complexity suboptimal algorithm called Iteration of Convex Optimization and Nonlinear Programming (ICONP) to solve it. Numerical results verify the better performance of our proposed algorithm. Optimal computing ratios and APs’ density allocation contribute to the charge saving.


2020 ◽  
Author(s):  
Long Zhang ◽  
Guobin Zhang ◽  
Xiaofang Zhao ◽  
Yali Li ◽  
Chuntian Huang ◽  
...  

A coupling of wireless access via non-orthogonal multiple access and wireless backhaul via beamforming is a promising way for downlink user-centric ultra-dense networks (UDNs) to improve system performance. However, ultra-dense deployment of radio access points in macrocell and user-centric view of network design in UDNs raise important concerns about resource allocation and user association, among which notably is energy efficiency (EE) balance. To overcome this challenge, we develop a framework to investigate the resource allocation problem for energy efficient user association in such a scenario. The joint optimization framework aiming at the system EE maximization is formulated as a large-scale non-convex mixed-integer nonlinear programming problem, which is NP-hard to solve directly with lower complexity. Alternatively, taking advantages of sum-of-ratios decoupling and successive convex approximation methods, we transform the original problem into a series of convex optimization subproblems. Then we solve each subproblem through Lagrangian dual decomposition, and design an iterative algorithm in a distributed way that realizes the joint optimization of power allocation, sub-channel assignment, and user association simultaneously. Simulation results demonstrate the effectiveness and practicality of our proposed framework, which achieves the rapid convergence speed and ensures a beneficial improvement of system-wide EE.<br>


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Somayeh Soleimani ◽  
Xiaofeng Tao

Caching content by users constitutes a promising solution to decrease the costly transmissions with going through the base stations (BSs). To improve the performance of in-network caching in device-to-device (D2D) communications, caching placement and content delivery should be jointly optimized. To this end, we jointly optimize caching decision and content discovery strategies by considering the successful content delivery in D2D links for maximizing the in-network caching gain through D2D communications. Moreover, an in-network caching placement problem is formulated as an integer nonlinear optimization problem. To obtain the optimal solution for the proposed problem, Lagrange dual decomposition is applied in order to reduce the complexity. Simulation results show that the proposed algorithm has a near-optimal performance, approaching that of the exhaustive search method. Furthermore, the proposed scheme has a notable in-network caching gain and an improvement in traffic offloading compared to that of other caching placement schemes.


2019 ◽  
Vol 9 (23) ◽  
pp. 5034 ◽  
Author(s):  
Abuzar B. M. Adam ◽  
Xiaoyu Wan ◽  
Zhengqiang Wang

In this paper, we investigate the energy efficiency (EE) maximization in multi-cell multi-carrier non-orthogonal multiple access (MCMC-NOMA) networks. To achieve this goal, an optimization problem is formulated then the solution is divided into two parts. First, we investigate the inter-cell interference mitigation and then we propose an auction-based non-cooperative game for power allocation for base stations. Finally, to guarantee the rate requirements for users, power is allocated fairly to users. The simulation results show that the proposed scheme has the best performance compared with the existing NOMA-based fractional transmit power allocation (FTPA) and the conventional orthogonal frequency division multiple access (OFDMA).


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Lanhua Xiang ◽  
Hongbin Chen ◽  
Feng Zhao

In order to meet the demand of explosive data traffic, ultradense base station (BS) deployment in heterogeneous networks (HetNets) as a key technique in 5G has been proposed. However, with the increment of BSs, the total energy consumption will also increase. So, the energy efficiency (EE) has become a focal point in ultradense HetNets. In this paper, we take the area spectral efficiency (ASE) into consideration and focus on the tradeoff between the ASE and EE in an ultradense HetNet. The distributions of BSs in the two-tier ultradense HetNet are modeled by two independent Poisson point processes (PPPs) and the expressions of ASE and EE are derived by using the stochastic geometry tool. The tradeoff between the ASE and EE is formulated as a constrained optimization problem in which the EE is maximized under the ASE constraint, through optimizing the BS densities. It is difficult to solve the optimization problem analytically, because the closed-form expressions of ASE and EE are not easily obtained. Therefore, simulations are conducted to find optimal BS densities.


Sign in / Sign up

Export Citation Format

Share Document