scholarly journals Dual-Band Reconfigurable Antenna for Polarization Diversity

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Youngje Sung

This paper proposes a dual-band reconfigurable square-ring antenna with a polarization diversity property. The proposed antenna consists of a square-ring resonator, two stubs with a shorting via, and two PIN diodes. The stub is positioned symmetrically to the left and right of the square-ring resonator, and the square-ring antenna connected to one of two stubs has a dual-band resonance. In this case, both resonant frequencies exhibit linear polarization (LP), and the two polarized waves are perpendicular to each other. The PIN diode selectively connects only one of the two stubs to the square-ring resonator. Thus, the polarization of the proposed antenna changes electrically at the two resonant frequencies. In addition, the frequency ratio (f2/f1) can be easily controlled by changing the length or width of the stub.

2022 ◽  
Vol 2161 (1) ◽  
pp. 012073
Author(s):  
Sathuluri MallikharjunaRao ◽  
Thirumala SettyVennelaSrujana ◽  
Gurivinadagunta Bhuvana Bindu ◽  
Garlapatikotinagapavani

Abstract The relevance of reconfiguration in a dynamic environment is to improve an antenna’s performance by allowing it to transition between multiple frequencies. In this paper, we designed a reconfigurable patch antenna and fed it by strip line feeding by placing 2 slots to obtain different resonant frequencies. The feature of reconfigurability is attained by using Pin Diodes. In our design, we take a 2 pin diode. The proposed Antenna can operate on different frequencies i.e. 2.88GHz, 5.5GHz, 10.8GHz and 11.1GHz with the efficiency of 90% and more at different conditions of the diodes. This analysis is done by using HFSS Software.


2021 ◽  
Vol 25 (3) ◽  
pp. 1-9
Author(s):  
Abdullah A. Jabber ◽  
◽  
Raad H. Thaher ◽  

This article presents design and simulation of a new compact four-element dual-band MIMO frequency reconfigurable antenna that can be reconfigured for WiMAX and LTE applications. The antenna includes four elements at the same FR4 substrate with an optimized overall size of 65x65x1.6 mm3 and an optimized partial GND plane of 30x11.125 mm2. The reconfiguration rate is between 2.41 and 3.99 GHz that can cover the WiMAX and LTE wireless devices by applying just one RF (PIN) switch to change the operating frequency. The antenna operates on the two states of the PIN diode under its two states ON and OFF with (2.7 GHz, and 2.8 GHz) resonant frequencies respectively. The proposed antenna produces acceptable simulation results for the MIMO system by achieving gain from (3-7.2) dBi, less than -14.5 dB coupling effect, less than 0.28 envelope correlation coefficient, and diversity gain range from 8.4-10.


2020 ◽  
Vol 37 (4) ◽  
pp. 633-638
Author(s):  
Abdessalam El Yassini ◽  
Mohammed Ali Jallal ◽  
Saida Ibnyaich ◽  
Abdelouhab Zeroual ◽  
Samira Chabaa

A miniaturized reconfigurable antenna with a hexagonal slot is presented. The motivation of this study is to overcome the problem of switching band antenna with minimum electronic components while designing a miniaturized antenna. The reconfigurable band property has been obtained using only two PIN diodes. The suggested structure has successfully permitted the reconfigurable ability up to three bands of 2.36-2.81 GHz, 3.20-4.23 GHz, and 3.13-5.92 GHz, which well suitable for the standard of the WLAN and WiMAX bands of 5.8/2.4/5.2 GHz and 5.5/2.5/3.5 GHz respectively. The peck gain and efficiency of the reconfigurable antenna at resonant frequencies 2.58, 3.56, 3.58, and 5.63 GHz are 1.48, 1.69, 1.89, 3.44 dBi and 89.60, 87.14, 90.48, 81.57%. The suggested antenna has a compact dimension of 31 × 14.5 mm2. This antenna has a better performance which makes it a good candidate to use in a variety of multimode wireless devices.


Frequenz ◽  
2016 ◽  
Vol 70 (9-10) ◽  
Author(s):  
Xiaolin Yang ◽  
Ziliang Yu ◽  
Zheng Wu ◽  
Huajiao Shen

AbstractIn this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3–3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5–6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3–3.6 GHz) and WLAN (5–6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.


2017 ◽  
Vol 9 (8) ◽  
pp. 1695-1703
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a coplanar waveguide (CPW)-fed dual-band uniplanar tri-polarization reconfigurable antenna based on the PIN diode switch is proposed. The proposed antenna can be reconfigured between the linear polarization (LP) and the circular polarization (CP) mode, including both the right-handed circular polarization and left-handed circular polarization simultaneously within the dual operating bands. The central frequencies of the bands are 2.63 and 4.42 GHz, respectively, and the overlapped operating bandwidth is 17.8 and 3.40%. The proposed reconfigurable antenna is a closed-slot antenna fed by the CPW transmission line and the reconfigurable mechanism is to regulate the T-shaped driven stub through switching the PIN diodes on and off. The scattering parameters, axial ratio, radiation pattern, gain, and the radiation efficiency of the proposed antenna are all investigated in the following. The optimized antenna has been fabricated to experimental test, the simulated and the measured results agree well with each other. The lower frequency band of the proposed antenna covers the 2.40 GHz WLAN specification and the upper band can be used for the 5 G communication (4.40–4.50 GHz); therefore it is suitable to be applied in the mobile wireless communication.


2016 ◽  
Vol 9 (4) ◽  
pp. 843-850 ◽  
Author(s):  
Dinesh Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
Santanu Dwari ◽  
Ganga Prasad Pandey ◽  
Sandeep Kumar

The design and measurement of reconfigurable circularly polarized capacitive fed microstrip antenna are presented. Small isosceles right angle triangular sections are removed from diagonally opposite corners for the generation of circular polarization (CP) of axial ratio bandwidth of 11.1%. Horizontal slits of different lengths are inserted at the edges of the truncated patch to provide the dual-band CP and by switching PIN diodes across the slits ON and OFF, reconfigurable circularly polarized antenna is realized. The antenna shows dual-band behavior with reconfigurable CP. In order to enhance the operation bandwidth of the antenna, an inclined slot was embedded on the patch along with PIN diodes across the horizontal slits. This proposed antenna gave an impedance bandwidth of 66.61% (ON state) ranging from 4.42 to 8.80 GHz and 68.42% (OFF state) ranging from 4.12 to 8.91 GHz and exhibits dual-frequency CP with PIN diode in OFF state and single-frequency CP with PIN diode in ON state with good axial ratio bandwidth. The axial ratio bandwidth of 4.42, 2.35, and 2.72% is obtained from the antenna. The antenna has a similar radiation pattern in all the three different CP bands and almost constant gain within the bands of CP operation.


2021 ◽  
Vol 129 (1) ◽  
pp. 014901
Author(s):  
Shengyuan Shi ◽  
Kefang Qian ◽  
Wentao Gao ◽  
Jing Dai ◽  
Minhua Li ◽  
...  

Reconfigurable antennas wires are equipped for working in various groups by recurrence re-configurability or polarization re-configurability. A recurrence reconfigurable fix reception apparatus with two rectangular metallic rings is utilized by changing the transmitting surface of antenna. The switches are presented at the focal point of the essential fix. This antenna can work in 1.8 GHz, 2.2 GHz and 2.7GHz recurrence groups, when the switches are turned ON and OFF. The emanating surface zone increments when the switches are turned ON and thus change the working recurrence of antenna. The switches are displayed for equal circuit of PIN diodes. In this paper the radio wire can work from 1.8GHz to 2.7 GHz. The antenna is created and reproduced in HFSS Software.


2017 ◽  
Vol 10 (3) ◽  
pp. 383-389
Author(s):  
Deepali Borakhade ◽  
Sanjay Pokle

In this paper, multiple-input–multiple output (MIMO) antenna with dual-band frequency reconfiguration is presented. The proposed antenna consists of two symmetrical pentagon radiating elements. These radiating elements support bands of 1.5 GHz (GPS) and 2.4 GHz (Wi-Fi) frequency. The two PIN diodes are appropriately located on slot line in order to control the current flowing through the radiator. All simulated results are compared and confirmed with measured results. The antenna has VSWR ⩽1.8 and isolation of −28 dB. The advantage of this antenna is that bandwidth is increased by switching of PIN diode in the range from 80 MHz up to maximum 300 MHz. These characteristics demonstrate that proposed antenna is an attractive solution for a multimode application such as GPS, Wi-Fi routers, vehicular communication, etc. where wideband is required.


2019 ◽  
Vol 12 (2) ◽  
pp. 163-175 ◽  
Author(s):  
Ghanshyam Singh ◽  
Binod K. Kanaujia ◽  
Vijay K. Pandey ◽  
Deepak Gangwar ◽  
Sachin Kumar

AbstractIn this work, a new compact, low profile, frequency, and end-fire pattern reconfigurable antenna is presented. The proposed antenna consists of four parasitic elements and an electric-inductive-capacitive (ELC) resonator enclosed with a closed ring resonator (CRR). The reconfigurability in the proposed antenna is achieved with the help of five PIN diodes (D1–D5) embedded on the top surface of the substrate. The diode (D1) is implanted between ELC and CRR resonators for frequency reconfigurability. The other four diodes (D2–D5) are implanted between the ground plane and four parasitic elements to control the electrical length of the ground plane to achieve pattern diversity. The ground plane and parasitic elements steer the primary omni-directional beam to bi-directional and uni-directional end-fire radiation at multiple frequencies. The proposed antenna exhibits multiband operation and end-fire pattern diversity depending upon the different states of PIN diodes. The overall size of the proposed antenna is 0.20λ0× 0.17λ0× 0.009λ0, where λ0 is calculated at the lowest resonance frequency. The impedance bandwidth of the antenna ranges from 1.45 to 26.22%, while peak gain varies from 0.86 to 3.86 dBi depending upon the state of operation. The measured results are in agreement with the simulated results, which confirm the frequency and pattern diversity performance of the antenna. The proposed antenna can be used in back-to-back repeater systems.


Sign in / Sign up

Export Citation Format

Share Document