scholarly journals DUAL-BAND RECONFIGURABLE MIMO ANTENNA FOR WIRELESS APPLICATIONS

2021 ◽  
Vol 25 (3) ◽  
pp. 1-9
Author(s):  
Abdullah A. Jabber ◽  
◽  
Raad H. Thaher ◽  

This article presents design and simulation of a new compact four-element dual-band MIMO frequency reconfigurable antenna that can be reconfigured for WiMAX and LTE applications. The antenna includes four elements at the same FR4 substrate with an optimized overall size of 65x65x1.6 mm3 and an optimized partial GND plane of 30x11.125 mm2. The reconfiguration rate is between 2.41 and 3.99 GHz that can cover the WiMAX and LTE wireless devices by applying just one RF (PIN) switch to change the operating frequency. The antenna operates on the two states of the PIN diode under its two states ON and OFF with (2.7 GHz, and 2.8 GHz) resonant frequencies respectively. The proposed antenna produces acceptable simulation results for the MIMO system by achieving gain from (3-7.2) dBi, less than -14.5 dB coupling effect, less than 0.28 envelope correlation coefficient, and diversity gain range from 8.4-10.

2020 ◽  
Vol 37 (4) ◽  
pp. 633-638
Author(s):  
Abdessalam El Yassini ◽  
Mohammed Ali Jallal ◽  
Saida Ibnyaich ◽  
Abdelouhab Zeroual ◽  
Samira Chabaa

A miniaturized reconfigurable antenna with a hexagonal slot is presented. The motivation of this study is to overcome the problem of switching band antenna with minimum electronic components while designing a miniaturized antenna. The reconfigurable band property has been obtained using only two PIN diodes. The suggested structure has successfully permitted the reconfigurable ability up to three bands of 2.36-2.81 GHz, 3.20-4.23 GHz, and 3.13-5.92 GHz, which well suitable for the standard of the WLAN and WiMAX bands of 5.8/2.4/5.2 GHz and 5.5/2.5/3.5 GHz respectively. The peck gain and efficiency of the reconfigurable antenna at resonant frequencies 2.58, 3.56, 3.58, and 5.63 GHz are 1.48, 1.69, 1.89, 3.44 dBi and 89.60, 87.14, 90.48, 81.57%. The suggested antenna has a compact dimension of 31 × 14.5 mm2. This antenna has a better performance which makes it a good candidate to use in a variety of multimode wireless devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Youngje Sung

This paper proposes a dual-band reconfigurable square-ring antenna with a polarization diversity property. The proposed antenna consists of a square-ring resonator, two stubs with a shorting via, and two PIN diodes. The stub is positioned symmetrically to the left and right of the square-ring resonator, and the square-ring antenna connected to one of two stubs has a dual-band resonance. In this case, both resonant frequencies exhibit linear polarization (LP), and the two polarized waves are perpendicular to each other. The PIN diode selectively connects only one of the two stubs to the square-ring resonator. Thus, the polarization of the proposed antenna changes electrically at the two resonant frequencies. In addition, the frequency ratio (f2/f1) can be easily controlled by changing the length or width of the stub.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1321
Author(s):  
Wahaj Abbas Awan ◽  
Syeda Iffat Naqvi ◽  
Wael Abd Ellatif Ali ◽  
Niamat Hussain ◽  
Amjad Iqbal ◽  
...  

This paper presents a compact and simple reconfigurable antenna with wide-band, dual-band, and single-band operating modes. Initially, a co-planar waveguide-fed triangular monopole antenna is obtained with a wide operational frequency band ranging from 4.0 GHz to 7.8 GHz. Then, two additional stubs are connected to the triangular monopole through two p-i-n diodes. By electrically switching these p-i-n diodes ON and OFF, different operating frequency bands can be attained. When turning ON only one diode, the antenna offers dual-band operations of 3.3–4.2 GHz and 5.8–7.2 GHz. Meanwhile, the antenna with single-band operation from 3.3 GHz to 4.2 GHz can be realized when both of the p-i-n diodes are switched to ON states. The proposed compact size antenna with dimensions of 0.27λ0 × 0.16λ0 × 0.017λ0 at the lower operating frequency (3.3 GHz) can be used for several wireless applications such as worldwide interoperability for microwave access (WiMAX), wireless access in the vehicular environment (WAVE), and wireless local area network (WLAN). A comparative analysis with state-of-the-art works exhibits that the presented design possesses advantages of compact size and multiple operating modes.


2017 ◽  
Vol 9 (8) ◽  
pp. 1695-1703
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a coplanar waveguide (CPW)-fed dual-band uniplanar tri-polarization reconfigurable antenna based on the PIN diode switch is proposed. The proposed antenna can be reconfigured between the linear polarization (LP) and the circular polarization (CP) mode, including both the right-handed circular polarization and left-handed circular polarization simultaneously within the dual operating bands. The central frequencies of the bands are 2.63 and 4.42 GHz, respectively, and the overlapped operating bandwidth is 17.8 and 3.40%. The proposed reconfigurable antenna is a closed-slot antenna fed by the CPW transmission line and the reconfigurable mechanism is to regulate the T-shaped driven stub through switching the PIN diodes on and off. The scattering parameters, axial ratio, radiation pattern, gain, and the radiation efficiency of the proposed antenna are all investigated in the following. The optimized antenna has been fabricated to experimental test, the simulated and the measured results agree well with each other. The lower frequency band of the proposed antenna covers the 2.40 GHz WLAN specification and the upper band can be used for the 5 G communication (4.40–4.50 GHz); therefore it is suitable to be applied in the mobile wireless communication.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3229
Author(s):  
Limei Hao ◽  
Meiling Men ◽  
Yazhe Wang ◽  
Jiayu Ji ◽  
Xiaole Yan ◽  
...  

A tunable dual-band acoustic metamaterial (AM) with nested two-layer split hollow spheres (TLSHSs) is presented here, which was achieved by adjusting the hole diameter and the ratio of the two layers’ volumes. This work comprises theoretical and numerical studies. Based on sound-force analogy (SFA), TLSHSs can be considered equivalent to a model of two spring oscillators in series. The equations of two resonant frequencies were derived, which precisely provided the relation between two resonant frequencies and the hole diameter as well as the ratio of the two layers’ volumes. The analytical formulas and simulation results by the finite element method (FEM) showed that there were two resonant frequencies for the TLSHSs, and their dynamic modulus became negative near the resonant frequencies. As the the diameter of two holes increased, both of the resonant frequencies underwent a blue shift. As the relative volume ratio increased, both of the resonant frequencies underwent a red shift. The calculation and simulation results were in good agreement. This kind of precisely controllable dual-band AM with negative modulus can easily be coupled to other structures with negative mass density, thereby achieving a double-negative AM in an expected frequency range.


2014 ◽  
Vol 8 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Mohammed Younus Talha ◽  
Kamili Jagadeesh Babu ◽  
Rabah W. Aldhaheri

A novel compact multiple-input–multiple-output (MIMO) antenna system operating from 5 to 7.3 GHz is proposed for wireless applications. It comprises of two similar antennas with microstrip feeding and radiating patches developed on a reduced ground plane. The developed antenna system resonates at a dual-band of 5.4 and 6.8 GHz frequencies, giving an impedance bandwidth of 38% (based on S11 < −10 dB). The unique structure of the proposed MIMO system gives a reduced mutual coupling of −27 dB at 5.4 GHz resonant frequency and −19 dB at 6.8 GHz resonant frequency and in the entire operating band the coupling is maintained well below −16 dB. The envelope correlation coefficient of the proposed MIMO system is calculated and is found to be less than 0.05 in the operating band. The measured and simulation results are found in good agreement.


With the increase in wireless applications, there is a need for compact antennas that adapt their behavior with changing system requirements or environmental conditions. Here adapt implies the antenna should be able to alter operating frequencies, impedance bandwidths, polarizations, radiation patterns. These all features are provided by the “Reconfigurable antenna”. The important feature of reconfigurable antenna is that, they provide the same throughput as a multi-antenna system. A compact frequency reconfigurable antenna is designed with the aid of Ansoft HFSS that provides multiple frequency bands. This is achieved by using electrical switches such as PIN diodes. Depending on state of switches different operating frequencies are obtained. The switches placed on the antenna elements are powered wirelessly by the antenna itself. The design, geometries and simulation results of a frequency reconfigurable antenna are presented in this report. Further advancements are to be done for this structure to achieve polarization and radiation pattern re-configurability.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012073
Author(s):  
Sathuluri MallikharjunaRao ◽  
Thirumala SettyVennelaSrujana ◽  
Gurivinadagunta Bhuvana Bindu ◽  
Garlapatikotinagapavani

Abstract The relevance of reconfiguration in a dynamic environment is to improve an antenna’s performance by allowing it to transition between multiple frequencies. In this paper, we designed a reconfigurable patch antenna and fed it by strip line feeding by placing 2 slots to obtain different resonant frequencies. The feature of reconfigurability is attained by using Pin Diodes. In our design, we take a 2 pin diode. The proposed Antenna can operate on different frequencies i.e. 2.88GHz, 5.5GHz, 10.8GHz and 11.1GHz with the efficiency of 90% and more at different conditions of the diodes. This analysis is done by using HFSS Software.


2018 ◽  
Vol 7 (5) ◽  
pp. 7-13 ◽  
Author(s):  
S. A. Shandal ◽  
Y. S. Mezaal ◽  
M. F. Mosleh ◽  
M. A. Kadim

In this paper, a pentagon slot inside fractal circular patch microstrip resonator to design compact antenna over partial ground plane is introduced using 3rd iteration of adopted fractal geometry. This antenna is modeled on FR4 substrate with a size of (20 x 18) mm2, thickness of 1.5mm, permittivity of 4.3 and loss tangent of 0.02. The used type of feeding is microstrip line feed. It is designed to operate at wide frequency range of (4.5-9.3) GHz at resonant frequencies of 5.7GHz and 7.9GHz with impedance bandwidth of 4.8 GHz. Both lengths of ground plane Lg and width of feed line Wf are optimized in order to acquire optimum bandwidth. The simulated return loss values are -33 and -41 dB at two resonant frequencies of 5.7 and 7.9 GHz with gain of 3.2 dB. The simulated results offered noteworthy compatibility with measured results. Also, the proposed wideband microstrip antenna has substantial compactness that can be integrated within numerous wireless devices and systems.


Sign in / Sign up

Export Citation Format

Share Document