scholarly journals Analysis of the Impact of Configuration of the Stabilisation System for Femoral Diaphyseal Fractures on the State of Stresses and Displacements

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jakub J. Słowiński ◽  
Konrad Kudłacik

Introduction. The treatment of femoral diaphyseal fractures by intramedullary nailing has become a common procedure in orthopaedic surgery. The purpose of this numerical simulation was to present how the changes in configuration of the stabilisation system can affect the stress and displacement state in the bone tissue and implanted device. Material and Methods. The numerical comparison of the stabilisation variants for the type 32-A2 femoral diaphyseal fracture (according to the AO classification) performed by using the Charfix2 (ChM®) anatomical nail locked in a number of chosen ways. The displacement and the stress distributions both in the bone and implant were obtained and analysed by computational simulation. Results. In all models, there was the same characteristic distribution, which shows there were minimal rotational movements of the bone around the anatomical axis. In all cases, stress concentrations were generated in the nail material in the area of the fracture gap. Conclusions. The obtained results indicate that there is a visible advantage to one-plane distal stabilisation in the reduction of stresses regardless of the type of proximal stabilisation. The results of calculations indicate that the use of proximal stabilisation with a neck screw reduces the possibility of damage to the implant.

Author(s):  
T Davis ◽  
J Ding ◽  
W Sun ◽  
S B Leen

In this study, the phenomenon of residual stress relaxation from foreign object damage (FOD) is numerically simulated using a hybrid explicit—implicit finite-element method. The effects of cycle fatigue loadings on stress relaxation were studied. FOD is first simulated by firing a 3mm cube impacting onto a plate made of titanium alloy Ti-6Al-4V at 200m/s. The FOD impact produces two distinct stress concentrations: one is compressive directly beneath the impact site; the other is tensile around the outer edge of the impact. The plate was then assumed to be subjected to a cyclic fatigue loading. The stress relaxation was investigated under a range of stress ratios and maximum applied stresses. Two different material models were considered for the simulations, namely an elastic—perfectly plastic model and a non-linear kinematic hardening model.


2012 ◽  
Vol 04 (02) ◽  
pp. 1250013 ◽  
Author(s):  
LINXIA GU ◽  
SHIJIA ZHAO ◽  
STACEY R. FROEMMING

The goal of this work is to quantitatively assess the relationship between the reported restenosis rates and stent induced arterial stress or strain parameters through finite element method. The impact of three stent designs (Palmaz–Schatz stent, Express stent, and Multilink Vision stent) on the arterial stress distributions were characterized. The influences of initial stent deployment location, stent-tissue friction, and plaque properties on the arterial stresses were also investigated. Higher arterial stresses were observed at the proximal end of the plaque. The Multilink–Vision stent induced lesser stress concentrations due to the high stiffness of the Cobalt Chromium material and thinner strut thickness. The stent-induced arterial stress concentrations were positively correlated with the reported in-stent restenosis rates, with a correlation coefficient of 0.992. Stent deployment initiated at the center of the lumen led to less arterial stress variation, while deployment closer to the thinner edge of the plaque causes higher arterial stresses. The friction between the stent and tissue was found to contribute to larger stress alternations for the plaque only. Increased plaque stiffness resulted in a reduced arterial stress concentration and clinical restenosis rate. Results presented herein suggested that arterial stresses serve as a comprehensive index factor to predict the occurrence of in-stent restenosis, which will facilitate the new stent design and surgical planning.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 176
Author(s):  
Valery Astapenko ◽  
Andrei Letunov ◽  
Valery Lisitsa

The effect of plasma Coulomb microfied dynamics on spectral line shapes is under consideration. The analytical solution of the problem is unachievable with famous Chandrasekhar–Von-Neumann results up to the present time. The alternative methods are connected with modeling of a real ion Coulomb field dynamics by approximate models. One of the most accurate theories of ions dynamics effect on line shapes in plasmas is the Frequency Fluctuation Model (FFM) tested by the comparison with plasma microfield numerical simulations. The goal of the present paper is to make a detailed comparison of the FFM results with analytical ones for the linear and quadratic Stark effects in different limiting cases. The main problem is connected with perturbation additions laws known to be vector for small particle velocities (static line shapes) and scalar for large velocities (the impact limit). The general solutions for line shapes known in the frame of scalar perturbation additions are used to test the FFM procedure. The difference between “scalar” and “vector” models is demonstrated both for linear and quadratic Stark effects. It is shown that correct transition from static to impact limits for linear Stark-effect needs in account of the dependence of electric field jumping frequency in FFM on the field strengths. However, the constant jumping frequency is quite satisfactory for description of the quadratic Stark-effect. The detailed numerical comparison for spectral line shapes in the frame of both scalar and vector perturbation additions with and without jumping frequency field dependence for the linear and quadratic Stark effects is presented.


2005 ◽  
Vol 297-300 ◽  
pp. 1321-1326 ◽  
Author(s):  
Sang Yeob Oh ◽  
Hyung Seop Shin

The damage behaviors induced in a SiC by a spherical particle impact having a different material and size were investigated. Especially, the influence of the impact velocity of a particle on the cone crack shape developed was mainly discussed. The damage induced by a particle impact was different depending on the material and the size of a particle. The ring cracks on the surface of the specimen were multiplied by increasing the impact velocity of a particle. The steel particle impact produced the larger ring cracks than that of the SiC particle. In the case of the high velocity impact of the SiC particle, the radial cracks were generated due to the inelastic deformation at the impact site. In the case of the larger particle impact, the morphology of the damages developed were similar to the case of the smaller particle one, but a percussion cone was formed from the back surface of the specimen when the impact velocity exceeded a critical value. The zenithal angle of the cone cracks developed into the SiC decreased monotonically as the particle impact velocity increased. The size and material of a particle influenced more or less on the extent of the cone crack shape. An empirical equation was obtained as a function of impact velocity of the particle, based on the quasi-static zenithal angle of the cone crack. This equation will be helpful to the computational simulation of the residual strength in ceramic components damaged by the particle impact.


2021 ◽  
pp. 000313482096852
Author(s):  
Sean R. Maloney ◽  
Caroline E. Reinke ◽  
Abdelrahman A. Nimeri ◽  
Sullivan A. Ayuso ◽  
A. Britton Christmas ◽  
...  

Operative management of emergency general surgery (EGS) diagnoses involves a range of procedures which can carry high morbidity and mortality. Little is known about the impact of obesity on patient outcomes. The aim of this study was to examine the association between body mass index (BMI) >30 kg/m2 and mortality for EGS patients. We hypothesized that obese patients would have increased mortality rates. A regional integrated health system EGS registry derived from The American Association for the Surgery of Trauma EGS ICD-9 codes was analyzed from January 2013 to October 2015. Patients were stratified into BMI categories based on WHO classifications. The primary outcome was 30-day mortality. Longer-term mortality with linkage to the Social Security Death Index was also examined. Univariate and multivariable analyses were performed. A total of 60 604 encounters were identified and 7183 (11.9%) underwent operative intervention. Patient characteristics include 53% women, mean age 58.2 ± 18.7 years, 64.2% >BMI 30 kg/m2, 30.2% with chronic obstructive pulmonary disease, 19% with congestive heart failure, and 31.1% with diabetes. The most common procedure was laparoscopic cholecystectomy (36.4%). Overall, 90-day mortality was 10.9%. In multivariable analysis, all classes of obesity were protective against mortality compared to normal BMI. Underweight patients had increased risk of inpatient (OR = 1.9, CI = 1.7-2.3), 30-day (OR = 1.9, CI = 1.7-2.1), 90-day (OR = 1.8, CI 1.6-2.0), 1-year (OR = 1.8, CI = 1.7-2.0), and 3-year mortality (OR = 1.7, CI = 1.6-1.9). When stratified by BMI, underweight EGS patients have the highest odds of death. Paradoxically, obesity appears protective against death, even when controlling for potentially confounding factors. Increased rates of nonoperative management in the obese population may impact these findings.


2020 ◽  
Vol 3 (4) ◽  
pp. 1209
Author(s):  
Anthony Fariman ◽  
Leo S. Tedianto

ABSTRAKBalok tinggi beton bertulang merupakan salah satu struktur khusus yang dapat memikul beban cukup besar dan umumnya digunakan sebagai transfer girder, struktur lepas pantai, struktur dinding, dan pondasi. Kehadiran bukaan pada balok tinggi dapat memfasilitasi jalur saluran AC, saluran pipa, jaringan kabel dan lain-lain. Dengan adanya bukaan pada balok tinggi dapat memberikan beberapa efek samping yaitu terjadinya diskontinuitas geometri, tegangan terdistribusi non-linier pada balok tinggi, berkurangnya kekuatan dari balok, dan timbulnya konsentrasi tegangan di sekitar bukaan. Penelitian ini bertujuan untuk menganalisis efek dari kehadiran bukaan pada balok tinggi di atas dua perletakan (sendi-rol) dan dibebani beban terpusat di tengah bentang balok lalu memvariasikan bentuk bukaan (persegi, persegi panjang, dan lingkaran) dan lokasi bukaan. Tegangan lentur pada balok tinggi dan konsentrasi tegangan yang terjadi di sekitar bukaan merupakan hal yang akan dibahas dalam penelitian. Analisis akan dibantu dengan Midas FEA yang merupakan program berbasis elemen hingga dan  pemodelan dilakukan dengan elemen solid tiga dimensi. Hasil dari analisis ini menunjukkan bahwa kehadiran bukaan pada balok tinggi menyebabkan kenaikan tegangan secara signifikan. Lokasi dari bukaan yang mendekati daerah tengah bentang balok juga sangat mempengaruhi besarnya tegangan yang terjadi.ABSTRACTReinforced concrete deep beam is one of the special structures that can carry quite a big load and generally used as a transfer girder, offshore structure, wall structure, and foundation. The appearance of openings in deep beams can facilitate AC pipelines, plumbing pipes, cable networks, etc. The existence of openings in deep beams can provide a few side effects such as geometric discontinuity, non-linear stress distributions over the deep beams, reduced strength of the deep beams, and stresses concentration will emerged around the openings. The purpose of this research is to analyze the effects from the existence of openings in deep beams on two supports (hinge and roller) and loaded by concentrated load in mid-span then variate the shape of openings (square, rectangle, and circle) and location of the openings. Flexural stresses in deep beams and the stress concentrations that occur around the openings are discussed in this research. The analysis will be assisted by Midas FEA which is a finite element based program and modelling will be executed in three dimensional solid elements. The result of this analysis showed that the existence of the openings in deep beams can cause stresses to increase significantly high. The location of the openings close to the mid-span of the deep beams also affect the amount of the stresses that occurs.


2018 ◽  
Vol 52 (21) ◽  
pp. 2859-2874 ◽  
Author(s):  
Martin Schwab ◽  
Melanie Todt ◽  
Heinz E Pettermann

A computationally efficient multiscale modelling approach for predicting impact damage within fabric reinforced laminated composites is presented. In contrast to common ply-level approaches, the topology of a multi-layered fabric reinforced laminate is resolved at tow-level for a sub-domain embedded in a shell layer with homogenised representation of the laminate. The detailed sub-domain is entirely modelled using shell elements, where material nonlinearities such as damage and plasticity-like behaviour of the tows, inelastic behaviour of unreinforced resin zones up to failure and delamination between plies are accounted for. To exemplify the capabilities of the approach, an explicit finite element simulation of a laminated plate consisting of eight carbon fabric reinforced epoxy plies with eight harness satin weaving style in a drop weight impact test setup is conducted. The spatial and temporal distribution of intra- and inter-ply damage is predicted and the total energy absorption by the plate, as well as the contributions of individual damage mechanisms are evaluated. The predictions show very good agreement with corresponding experimental data from the literature and give insight into the impact behaviour of the laminate beyond the capability of usual experiments. The new approach allows to resolve the stress concentrations due to fabric topology in detail. Compared to common ply-level approaches this is reflected in different predicted energy absorptions per mechanism although, the total energy absorption hardly differs. This is especially important when the post impact behaviour of laminates is predicted as it is strongly influenced by the extent of the individual damage mechanisms.


Author(s):  
B Zhou ◽  
X Han ◽  
W Guo ◽  
Z Liu ◽  
S-K Tan

Line heating is an important plate bending process that has been adopted in shipyards for more than 60 years. This paper presents the results of a numerical and experimental study on the residual deformation and stress distribution in the plate forming process using the line heating method. In this paper, a finite element model was used to simulate the heating process, and the model was validated using experimental results. The model was then used to analyze the deformation and stress distributions in the heating and non-heating region. The impact of line heating and sequence of heating on both sides of a steel plate was discussed. The findings of the study show that the compression stress generated help to increase the shrinkage of line heating process. This study presents a valuable reference for similar thermal process.


Sign in / Sign up

Export Citation Format

Share Document