scholarly journals Mechanism Study on the Axial Compressive Performance of Short Square CFST Columns with Different Stiffeners

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bing Xu ◽  
Fahong Wu ◽  
Guizhong Xu

In order to limit the disengaging of short square concrete-filled steel tube (CFST) columns and strengthen the combined action of steel tubes and concrete, a reinforcing method of stiffener is put forward in this paper. The axial compression performance and mechanism are studied through experiments, which indicate that (1) the buckling model of stiffening members changes into double wave, (2) stiffeners enforce the constraint in core concrete, (3) stiffeners can effectively improve the ultimate bearing capacity, (4) the stiffeners increase the stress in the middle of the steel tube and improve the distribution of stress for the core concrete, and (5) the direct ribs have more influence on the bearing capacity while ribs with holes have more impact on the deformation of the tube. At the end of the article, a formula for calculating the ultimate bearing capacity is presented, which can bring out a more accurate bearing capacity value.

2011 ◽  
Vol 368-373 ◽  
pp. 369-372
Author(s):  
Zhu Yan Li ◽  
Yong Jun Liu ◽  
Dong Wang

The tests are order to investigate the axial compressive performance of the new circular hybrid Steel-Concrete- CFRP-Concrete column (simply called SCCC column).SCCC column is composed of steel tube, annular concrete, CFRP tube and core concrete. Axial ultimate bearing capacity test was performed on 3 SCCC columns, from which we gains the law of affecting SCCC columns, the load-strain curve and load-displacement curve of SCCC columns, and compare the test results of the test specimen with different annular concrete thicknesses, from which we finds that after the relationship curve of test specimen with small annular concrete thickness reaches yield load, the bearing capacity starts to decline, and then continues to rise till the ultimate load is reached and the test specimen is damaged. The result shows that the smaller the annular concrete thickness is, the greater the axial ultimate bearing capacity of SCCC column is, and also indicates that CFRP tube plays a role of binding and constraining to the core concrete in later period of loading the test specimens.


2011 ◽  
Vol 94-96 ◽  
pp. 220-224 ◽  
Author(s):  
Xi Guang Cui ◽  
Hai Dong Xu

Considering the strain rate then puts forward the modified uniaxial dynamic constitutive model related to strain rate in concrete-filled square steel tube and the modified calculation results match well with the experimental results. Based on the above conclusion, uniaxial compression performance finite element analysis with different strain rate among 10-5/s–10-3/s is completed, the results showed that strain rate can obviously change the dynamic performance of the concrete-filled square steel tube. Through the analysis of the influencing factors of the core concrete compressive strength, it is showed that with the increasing of the strain rate and the improving of concrete strength, the ultimate bearing capacity of concrete-filled square steel tube is higher and the ductility is reduced. With the increasing of stirrup ratio, ultimate bearing capacity is greater and the ductility is enhanced. With the sectional dimensions increasing, the ultimate bearing capacity is greater and the ductility is enhanced.


2013 ◽  
Vol 690-693 ◽  
pp. 742-746
Author(s):  
Peng Wu ◽  
Jian Feng Xu ◽  
Jun Hai Zhao ◽  
Qian Zhu ◽  
Su Wang

Based on unified strength theory, the mechanical behavior of core-concrete of concrete-filled square steel tubular stub columns was analyzed. Through controlling the constraint effect between square steel tube and core-concrete by width-thickness ratio, the ultimate bearing capacity formula for concrete-filled square steel tubular stub columns under axial compression was proposed, and the influencing factors of which was also discussed. The rationality of proposed formula was proved from the comparison of the analytical results obtained in this paper and experimental data.


2008 ◽  
Vol 400-402 ◽  
pp. 901-910 ◽  
Author(s):  
Fu Jun Liu ◽  
Jian Cai

Based on the principle of restrained concrete, this paper presents a new-type concrete filled steel tubular column-slab joint. This new-type joint is characterized by keeping the concrete floor slab continuous while breaking the steel tube of the column for the joint, thus joining the slab and the concrete filled steel tubular(CFST) columns at the top and the bottom of the slab. The joint has the advantage of transferring loads dependably, constructing conveniently and saving on the cost. Three groups of experiments (21 specimens contained) were performed to test the safety of the joint and investigate its axial bearing capacity. The results show that the joint is dependable and feasible in engineering applications. In addition, this paper studies the working mechanism and mechanical properties of the joint under axial compression, discusses the factors to influence its axial bearing capacity, and finally brings out the formula of the joint’s bearing capacity under axial compression that adapts to engineering applications, which conservatively evaluate the result of the experiments.


2021 ◽  
Vol 11 (21) ◽  
pp. 10468
Author(s):  
Huanjun Jiang ◽  
Ahmed Salih Mohammed ◽  
Reza Andasht Kazeroon ◽  
Payam Sarir

The ultimate strength of composite columns is a significant factor for engineers and, therefore, finding a trustworthy and quick method to predict it with a good accuracy is very important. In the previous studies, the gene expression programming (GEP), as a new methodology, was trained and tested for a number of concrete-filled steel tube (CFST) samples and a GEP-based equation was proposed to estimate the ultimate bearing capacity of the CFST columns. In this study, however, the equation is considered to be validated for its results, and to ensure it is clearly capable of predicting the ultimate bearing capacity of the columns with high-strength concrete. Therefore, 32 samples with high-strength concrete were considered and they were modelled using the finite element method (FEM). The ultimate bearing capacity was obtained by FEM, and was compared with the results achieved from the GEP equation, and both were compared to the respective experimental results. It was evident from the results that the majority of values obtained from GEP were closer to the real experimental data than those obtained from FEM. This demonstrates the accuracy of the predictive equation obtained from GEP for these types of CFST column.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Pengfei Li ◽  
Tao Zhang ◽  
Chengzhi Wang

The behavior of concrete-filled steel tube (CFST) columns subjected to axial compression was experimentally investigated in this paper. Two kinds of columns, including CFST columns with foundation and columns without foundation, were tested. Columns of pure concrete and concrete with reinforcing bars as well as two steel tube thicknesses were considered. The experimental results showed that the CFST column with reinforcing bars has a higher bearing capacity, more effective plastic behavior, and greater toughness, and the elastoplastic boundary point occurs when the load is approximately 0.4–0.5 times of the ultimate bearing capacity. The change of rock-socketed depth and the presence of steel tube will affect the ultimate bearing capacity of rock-socketed pile. The bearing capacities of the rock-socketed CFST columns are lower than those of rock-socketed columns without a steel tube under a vertical load; besides, the greater the rock-socketed depth, the greater the bearing capacity of the rock-socketed piles. In addition, a numerical comparison between the ultimate load and the theoretical value calculated from the relevant specifications shows that the ultimate load is generally considerably greater than the theoretical calculation results.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4831
Author(s):  
Hao Sun ◽  
Qingyuan Xu ◽  
Pengfei Yan ◽  
Jianguang Yin ◽  
Ping Lou

In order to study the axial compression performance of the T-shaped multi-cavity concrete-filled steel tube shear wall, first, three specimens were designed to perform the axial compression test. Then three-dimensional finite element analysis by the ABAQUS software was used to obtain the axial bearing capacity of the shear wall with different parameters. According to the results of the finite element model, the computational diagram in the limit state was obtained. The diagram was simplified into the core concrete in the non-enhanced area that was not constrained by the steel tube and the core concrete in the enhanced area that was uniformly constrained by the steel tube. Finally, a new practical equation for calculating the axial bearing capacity of a multi-cavity concrete-filled steel tubular shear wall was deduced and proposed based on the theory of ultimate equilibrium. The calculation results of the proposed equation were in good agreement with the finite element results, and the proposed equation can be used in practical engineering design.


2010 ◽  
Vol 163-167 ◽  
pp. 520-523
Author(s):  
Hai Yang Wang ◽  
Xiao Xiong Zha

In order to study the influence of expansive agent on the performance of CFST column with the creep due to dead load of the practical construction, in this paper, based on the simulation phase of construction, a series of experiments were conducted to study effect of the expansive agent dosage on the ultimate bearing capacity of CFST columns and the creep deformation in the longitudinal direction. Also the experiments were completed to comparative study on the problem of the recycled aggregate concrete -filled steel tube (RACFST) column. It is found that the ultimate bearing capacity of the CFST column is increased a lot when using the expansive agent, while for the RACFST column it has just a little increase. In contrast, for the RACFST column, there is a greatly increase on the creep deformation in the longitudinal direction, and the more expansive agent dosage the larger deformation, but it is not so obvious effect for general CFST column.


2011 ◽  
Vol 243-249 ◽  
pp. 563-566
Author(s):  
Tong Feng Zhao ◽  
Dan Li ◽  
Chang Zheng Sun ◽  
Hong Liu

The paper puts forward the one-dimensional strain rate related dynamic constitutive model of concrete-filled steel tube. The calculation results are in good agreement with the experimental results. Uniaxial compression performance finite element analysis at the strain rate among 10/s-5—10/s-2 is completed based on the conclusions. The results showed that considering concrete strain rate effect, the bearing performance of CFST is obviously changed. It showed that with the strength of concrete and strain rate increasing, ultimate bearing capacity of concrete-filled steel tube is improved and ductility is reduced. With the confining ratio and strain rate increasing, the ultimate bearing capacity and ductility of CFST are improved. With the slenderness ratios and strain rate increasing, the ultimate bearing capacity and ductility are reduced.


2008 ◽  
Vol 400-402 ◽  
pp. 513-518 ◽  
Author(s):  
Yong Chang Guo ◽  
Pei Yan Huang ◽  
Yang Yang ◽  
Li Juan Li

The improvement of the load carrying capacity of concrete columns under a triaxial compressive stress results from the strain restriction. Under a triaxial stress state, the capacity of the deformation of concrete is greatly decreased with the increase of the side compression. Therefore, confining the deformation in the lateral orientation is an effective way to improve the strength and ductility of concrete columns. This paper carried out an experimental investigation on axially loaded normal strength concrete columns confined by 10 different types of materials, including steel tube, glass fiber confined steel tube (GFRP), PVC tube, carbon fiber confined PVC tube (CFRP), glass fiber confined PVC tube (GFRP), CFRP, GFRP, polyethylene (PE), PE hybrid CFRP and PE hybrid GFRP. The deformation, macroscopical deformation characters, failure mechanism and failure modes are studied in this paper. The ultimate bearing capacity of these 10 types of confined concrete columns and the influences of the confining materials on the ultimate bearing capacity are obtained. The advantages and disadvantages of these 10 types of confining methods are compared.


Sign in / Sign up

Export Citation Format

Share Document