scholarly journals Single Bout Exercise in Children with Juvenile Idiopathic Arthritis: Impact on Inflammatory Markers

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Rochette Emmanuelle ◽  
Duché Pascale ◽  
Hourdé Christophe ◽  
Evrard Bertrand ◽  
Pereira Bruno ◽  
...  

Objective. In a context of inflammatory disease such as juvenile idiopathic arthritis (JIA), we do not know what impact physical activity may have on a deregulated immune system. The objective is to measure the impact of a single bout of exercise on plasma inflammatory markers such as calprotectin, IL-6, sIL-6R, sgp130, and the hypothalamic-pituitary-adrenal axis in children with juvenile idiopathic arthritis. Methods. Twelve children with JIA performed a nonexercise control day and a consecutive day that included a 20 min exercise bout at 70% of max-HR at 08:30 am. Venous blood samples were taken at 08:30, 08:50, 09:30, 10:30 am, and 12:00 pm to measure plasma concentrations of calprotectin, IL-6, sIL-6R, sgp130, cortisol, and ACTH. Pain was evaluated at 08:30, 08:50 am, and 06:00 pm. Results. There was a transient twofold increase in postexercise self-evaluated pain (p=0.03) that disappeared in the evening. A single bout of exercise resulted in a 1.7-fold increase in plasma calprotectin (p<0.001) but not IL-6 and its soluble receptors. Calprotectin levels returned to baseline within 3 hours after cessation of exercise. Conclusion. Acute exercise in children with JIA induced slightly musculoskeletal leg pain and transient increased plasma calprotectin levels but not IL-6 levels. Trial registration in ClinicalTrials.gov, reference number NCT 02502539, registered on 29 May 2015.

2018 ◽  
Vol 39 (11) ◽  
pp. 867-874 ◽  
Author(s):  
Emmanuelle Rochette ◽  
Etienne Merlin ◽  
Christophe Hourdé ◽  
Bertrand Evrard ◽  
Bruno Peraira ◽  
...  

AbstractThe aim of this study was to measure the impact, at 24 h post-exercise, of a single exercise bout on plasma inflammatory markers such as calprotectin, IL-6, sIL-6 R, sgp130 and the hypothalamic-pituitary-adrenal (HPA) axis in children with juvenile idiopathic arthritis (JIA).Twelve children with JIA attended the laboratory on three consecutive days (control day, exercise day and 24 h post-exercise), including a 20-min exercise bout on a cycle-ergometer at 70% of max. HR at 8:30 a.m. on day 2. Plasma concentrations of calprotectin, IL-6, sIL-6 R, sgp130, cortisol, ACTH and DHEA were measured on venous blood samples taken every day.at rest and at 8:30, 8:50, 9:30, 10:30 a.m. and 12:00, 3:00, 5:30 p.m.A single exercise bout increased plasma calprotectin 1.7-fold (p<0.001) but did not increase IL-6 and soluble IL-6 receptors in short-term post-exercise recovery. However, at 24 h post-exercise, calprotectin, IL-6 and its receptors had decreased compared to control-day levels. There was a transient 2-fold increase in post-exercise self-evaluated pain (p=0.03) that disappeared in the evening without repercussions the following day.Physical activity in children with JIA results in a slight transient systemic inflammation but seems to be followed by counter-regulation at 24 h post-exercise with a decrease in proinflammatory markers.


Author(s):  
Geoffrey Warnier ◽  
Estelle De Groote ◽  
Florian A. Britto ◽  
Ophélie Delcorte ◽  
Joshua P. Nederveen ◽  
...  

Purpose: To investigate exosome-like vesicle (ELV) plasma concentrations and markers of multivesicular body (MVB) biogenesis in skeletal muscle in response to acute exercise. Methods: Seventeen healthy (BMI: 23.5±0.5kg·m-2) and fifteen prediabetic (BMI: 27.3±1.2kg·m-2) men were randomly assigned to two groups performing an acute cycling bout in normoxia or hypoxia (FiO2 14.0%). Venous blood samples were taken before (T0), during (T30) and after (T60) exercise and biopsies from m. vastus lateralis were collected before and after exercise. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis (NTA), and characterized according to international standards, followed by expression analyses of canonical ELV markers in skeletal muscle. Results: In the healthy normoxic group, the total number of particles in the plasma increased during exercise from T0 to T30 (+313%) followed by a decrease from T30 to T60 (-53%). In the same group, an increase in TSG101, CD81 and HSP60 protein expression was measured after exercise in plasma ELVs; however, in the prediabetic group, the total number of particles in the plasma was not affected by exercise. The mRNA content of TSG101, ALIX and CD9 were upregulated in skeletal muscle after exercise in normoxia; whereas, CD9 and CD81 were downregulated in hypoxia. Conclusions: ELV plasma abundance increased in response to acute aerobic exercise in healthy subjects in normoxia, but not in prediabetic subjects, nor in hypoxia. Skeletal muscle analyses suggested that this tissue did not likely play a major role of the exercise-induced increase in circulating ELVs.


2020 ◽  
Author(s):  
Karsten Koehler ◽  
Safiya E Beckford ◽  
Elise Thayer ◽  
Alexandra R Martin ◽  
Julie B Boron ◽  
...  

Although exercise modulates appetite regulation and food intake, it remains poorly understood how exercise impacts decision making about food. The purpose of the present study was to assess the impact of an acute exercise bout on hypothetical choices related to the amount and timing of food intake. Forty-one healthy participants (22.0 ± 2.6 years; 23.7 ± 2.5 kg/m2, 56% female) completed 45 minutes of aerobic exercise and a resting control condition in randomized order. Food amount preferences and intertemporal food preferences (preference for immediate vs. delayed consumption) were assessed using electronic questionnaires with visual food. Compared to rest, exercise resulted in a greater increase in the food amount selected, both immediately post exercise (+25.8 ± 11.0 vs. +7.8 ± 11.0 kcal/item, p = 0.02) and 30 min post exercise (+47.3 ± 12.4 vs. +21.3 ± 12.4 kcal/item, p = 0.005). Exercise further resulted in a greater increase in the preference for immediate consumption immediately post exercise (+0.23 ± 0.10 vs. +0.06 ± 0.10; p = 0.03) and 30 min post exercise (+0.30 ± 0.12 vs. +0.08 ± 0.12; p = 0.01). Our findings demonstrate that a single bout of aerobic exercise shifts hypothetical food choices towards greater amounts and more immediate consumption, highlighting the importance of the timing of food choices made in the exercise context.


1999 ◽  
Vol 276 (1) ◽  
pp. E118-E124 ◽  
Author(s):  
S. M. Phillips ◽  
K. D. Tipton ◽  
A. A. Ferrando ◽  
R. R. Wolfe

We examined the effect of resistance training on the response of mixed muscle protein fractional synthesis (FSR) and breakdown rates (FBR) by use of primed constant infusions of [2H5]phenylalanine and [15N]phenylalanine, respectively, to an isolated bout of pleiometric resistance exercise. Trained subjects, who were performing regular resistance exercise (trained, T; n = 6), were compared with sedentary, untrained controls (untrained, UT; n = 6). The exercise test consisted of 10 sets (8 repetitions per set) of single-leg knee flexion (i.e., pleiometric muscle contraction during lowering) at 120% of the subjects’ predetermined single-leg 1 repetition maximum. Subjects exercised one leg while their contralateral leg acted as a nonexercised (resting) control. Exercise resulted in an increase, above resting, in mixed muscle FSR in both groups (UT: rest, 0.036 ± 0.002; exercise, 0.0802 ± 0.01; T: rest, 0.045 ± 0.004; exercise, 0.067 ± 0.01; all values in %/h; P< 0.01). In addition, exercise resulted in an increase in mixed muscle FBR of 37 ± 5% (rest, 0.076 ± 0.005; exercise, 0.105 ± 0.01; all values in %/h; P < 0.01) in the UT group but did not significantly affect FBR in the T group. The resulting muscle net balance (FSR − FBR) was negative throughout the protocol ( P < 0.05) but was increased in the exercised leg in both groups ( P < 0.05). We conclude that pleiometric muscle contractions induce an increase in mixed muscle protein synthetic rate within 4 h of completion of an exercise bout but that resistance training attenuates this increase. A single bout of pleiometric muscle contractions also increased the FBR of mixed muscle protein in UT but not in T subjects.


2004 ◽  
Vol 97 (3) ◽  
pp. 1013-1021 ◽  
Author(s):  
Leigh Perreault ◽  
Jennifer M. Lavely ◽  
Bryan C. Bergman ◽  
Tracy J. Horton

Effects of a single exercise bout on insulin action were compared in men ( n = 10) and women ( n = 10). On an exercise day, subjects cycled for 90 min at 85% lactate threshold, whereas on a rest (control) day, they remained semirecumbent. The period of exercise, or rest, was followed by a 3-h hyperinsulinemic-euglycemic clamp (30 mU·m−2·min−1) and indirect calorimetry. Glucose kinetics were measured isotopically by using an infusion of [6,6-2H2]glucose. Glucose infusion rate (GIR) during the clamp on the rest day was not different between the genders. However, GIR on the exercise day was significantly lower in men compared with women ( P = 0.01). This was mainly due to a significantly lower glucose rate of disappearance in men compared with women ( P = 0.05), whereas no differences were observed in the endogenous glucose rate of appearance. Nonprotein respiratory quotient (NPRQ) increased significantly during the clamp from preclamp measurements in men and women on the rest day ( P < 0.01). Exercise abolished the increase in NPRQ seen during the clamp on the rest day and tended to decrease NPRQ in men. Our results indicate the following: 1) exercise abolishes the usual increase in NPRQ observed during a hyperinsulinemic-euglycemic clamp in both genders, 2) men exhibit relatively lower whole body insulin action in the 3–4 h after exercise compared with women, and 3) gender differences in insulin action may be explained by a lower glucose rate of disappearance in the men after acute exercise. Together, these data imply gender differences in insulin action postexercise exist in peripheral tissues and not in liver.


2007 ◽  
Vol 53 (11) ◽  
pp. 1921-1927 ◽  
Author(s):  
Mads Nybo ◽  
Marianne Benn ◽  
Rasmus Mogelvang ◽  
Jan Skov Jensen ◽  
Peter Schnohr ◽  
...  

Abstract Background: Age, sex, and renal function contribute to variations in plasma concentrations of B-type natriuretic peptide (BNP) and its molecular precursor (proBNP). Recent studies indicate that anemia may also affect proBNP concentrations in patients with heart failure or stroke. However, the impact of hemoglobin status on proBNP concentrations has not been established in the general population. Methods: In the 4th examination in the Copenhagen City Heart Study, we performed a nested case-control study of 6238 individuals from a Danish general population. Of these, 3497 randomly selected participants also underwent an echocardiographic examination. The population was stratified into groups depending on health and hemoglobin status. Correlations between hemoglobin and proBNP concentrations were examined by simple and multiple regression analyses, adjusted for variables known to influence the proBNP plasma concentration. Results: The mean proBNP concentration was increased 1.7-fold in the group with anemia vs the nonanemic group [mean (SD) 42 (45) pmol/L vs 25 (29) pmol/L, P &lt;0.0001, n = 5892]. Multiple regression analysis confirmed an independent effect of hemoglobin on proBNP concentrations. In a selected subgroup without signs or symptoms of heart disease (n = 2855), lower hemoglobin concentrations, defined as &lt;120 g/L in women and &lt;130 g/L in men, were associated with increased circulating proBNP concentrations, but the contribution to the overall variation in proBNP concentrations was modest. Conclusions: Because moderate anemia is associated with a 1.7-fold increase in proBNP concentrations, hemoglobin concentrations should be taken into consideration in patients with nonspecific symptoms of heart disease and increased proBNP concentrations.


2012 ◽  
Vol 37 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Michelle M. Farnfield ◽  
Leigh Breen ◽  
Kate A. Carey ◽  
Andrew Garnham ◽  
David Cameron-Smith

Purpose: To investigate the impact of whey protein ingestion and resistance exercise training on the phosphorylation of mRNA translational signalling proteins in the skeletal muscle of young and old men. Methods: Sixteen healthy young (aged 18–25 years) and 15 healthy older men (aged 60–75 years) completed 12 weeks of resistance exercise and were randomly assigned to consume a whey protein (WPI) or placebo drink after each session. Muscle biopsies were collected before and 2 h after an acute exercise bout at the beginning and the end of training. Results: All subjects significantly increased strength after following strength training. Phosphorylation of mTOR was significantly greater in the WPI groups compared with placebo for both younger and older subjects. Phosphorylation of p70S6K, eIF4G, and 4EBP1 was greater for older subjects consuming WPI. Phosphorylation of rpS6, eIF4G, and 4EBP1 tended to increase in the younger subjects that had consumed WPI. Post-training, younger subjects demonstrated a similar pattern of mTOR phosphorylation as seen pre-training. In contrast, the initial heightened phosphorylation of mTOR, p70S6K, rpS6, and eIF4G in older muscle to combined resistance exercise and WPI ingestion became less pronounced after repeated training sessions. Conclusions: In the untrained state, resistance exercise coupled with WPI increases the phosphorylation of proteins involved in mRNA translation compared with exercise alone. Post-training, WPI- and exercise-induced protein phosphorylation was reduced in older men, but not in younger men. Thus, strategies to induce hypertrophy should utilize protein and resistance training concurrently. Further investigations should delineate interventions that will maintain sensitivity to anabolic stimuli in older populations.


2020 ◽  
Vol 9 (1) ◽  
pp. 33-38
Author(s):  
Jeremie E. Chase ◽  
Jason D. Peeler ◽  
Matthew J. Barr ◽  
Phillip F. Gardiner ◽  
Stephen M. Cornish

Author(s):  
Alexander Schenk ◽  
Niklas Joisten ◽  
David Walzik ◽  
Christina Koliamitra ◽  
Daria Schoser ◽  
...  

Abstract Purpose The programmed cell death protein 1 (PD-1) has become a promising target in cancer immunotherapy. PD-1 expression of CD8+ T-cells may be increased via the exploitation of aryl hydrocarbon receptor (AhR) signaling with kynurenine (KYN) as a ligand. Since exercise affects KYN metabolism, we exploratory investigated the influence of acute exercise bouts on AhR and PD-1 levels of CD8+ T-cells. Method In this study, 24 healthy males (age: 24.6 ± 3.9 years; weight 83.9 ± 10.5 kg; height: 182.4 ± 6.2 cm) completed a single bout of endurance (EE) and resistance exercise (RE) in a randomly assigned order on separate days. Blood samples were drawn before (t0), after (t1), and 1 h after (t2) both conditions. T-cell populations, the level of cytoplasmic AhR, and surface PD-1 were assessed by flow cytometry. Results T-cell populations changed over time, indicated by an increase in the absolute numbers of CD3+ lymphocytes after EE (p < .001) and RE (p = .036) and in PD-1+ CD8+ T-cells after EE (p = .021). Proportions of T-cell populations changed only after EE (t0–t2: p = .029; t1-t2: p = .006). The level of cytoplasmic AhR decreased immediately after exercise in both exercise conditions (EE: p = .009; RE: p = .036). The level of surface PD-1 decreased 1 h after EE (p = .005). Conclusion We analyzed the level of surface PD-1 and cytoplasmic AhR following acute physical exercise for the first time. Especially EE was observed to impact both AhR and PD-1 levels, undermining its role as the AhR-PD-1 axis modulator. These results provide new insights into the impact of exercise on AhR-signaling, which could potentially be relevant for various chronic diseases.


2013 ◽  
Vol 115 (5) ◽  
pp. 618-625 ◽  
Author(s):  
Sine H. Knudsen ◽  
Kristian Karstoft ◽  
Thomas P. J. Solomon

Ghrelin levels are suppressed in obese subjects and subjects with Type 2 diabetes mellitus (T2DM). Exercise-stimulated decreases in plasma ghrelin are a proposed mediator of exercise-induced satiety in healthy subjects. However, exercise-induced satiety and the impact of impaired ghrelin levels in obesity-related disease are poorly understood. Therefore our objective was to investigate exercise-induced postprandial satiety and ghrelin responses in overweight subjects with T2DM ( N = 8) and healthy controls ( N = 7). Visual analog scale satiety questionnaires (assessing hunger, thirst, food that could be eaten, nausea, and fullness) and circulating levels of glucose, insulin, and total and acylated ghrelin were measured at baseline and in response to a 75 g oral glucose load, provided immediately after an aerobic exercise bout (1 h at 50% Wmax) or no exercise (rest trial), on two separate occasions. Baseline levels of total (284.4 ± 15.9 and 397.6 ± 35.2 pmol/l) and acylated ghrelin (7.9 ± 1.0 and 13.7 ± 1.2 pmol/l) were lower in subjects with T2DM compared with healthy subjects ( P < 0.05). In the rest trial, post- vs. preprandial feeling of fullness increased in healthy subjects but decreased in subjects with T2DM (healthy vs. T2DM; P < 0.05). Exercise increased postprandial fullness in the T2DM group ( P < 0.05), while plasma ghrelin levels were unaffected. Our data suggest that the presence of T2DM likely drives suppressed ghrelin levels and poor appetite regulation, but a single exercise bout is sufficient to restore oral glucose-induced fullness independently of ghrelin.


Sign in / Sign up

Export Citation Format

Share Document