scholarly journals Spatiotemporal Statistical Channel Model for Indoor Corridor at 14 GHz, 18 GHz, and 22 GHz Bands

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Nicholas O. Oyie ◽  
Thomas J. O. Afullo

Several techniques have been proposed to overcome challenges of meeting demands for higher data rates in wireless communication. Space-time diversity method is proposed to exploit spatiotemporal nature of the channel; hence, a comprehensive knowledge of the spatiotemporal properties of a channel is required. In this paper, a measurement-based channel model that considers both delay and angular domains of an indoor corridor channel for 14 GHz, 18 GHz, and 22 GHz is proposed. A nonparametric Gaussian kernel density estimation method is applied for cluster identification for the three frequency bands. This work proposes a spatiotemporal model that conditions the model parameters on the azimuthal spatial domain. The clusters are modeled on the complete azimuth plane and a Gaussian estimation distribution is fitted onto the empirical data plot. Both clusters and multipath components are modeled and results are compared with Saleh-Valenzuela model parameter values. The results show that both clusters and multipath components can be estimated by probability density functions that follow Gaussian and Laplacian fits on the spatial domain for indoor corridor environment, respectively.

2020 ◽  
pp. 1-11
Author(s):  
Hui Wang ◽  
Huang Shiwang

The various parts of the traditional financial supervision and management system can no longer meet the current needs, and further improvement is urgently needed. In this paper, the low-frequency data is regarded as the missing of the high-frequency data, and the mixed frequency VAR model is adopted. In order to overcome the problems caused by too many parameters of the VAR model, this paper adopts the Bayesian estimation method based on the Minnesota prior to obtain the posterior distribution of each parameter of the VAR model. Moreover, this paper uses methods based on Kalman filtering and Kalman smoothing to obtain the posterior distribution of latent state variables. Then, according to the posterior distribution of the VAR model parameters and the posterior distribution of the latent state variables, this paper uses the Gibbs sampling method to obtain the mixed Bayes vector autoregressive model and the estimation of the state variables. Finally, this article studies the influence of Internet finance on monetary policy with examples. The research results show that the method proposed in this article has a certain effect.


2021 ◽  
Vol 13 (10) ◽  
pp. 1865
Author(s):  
Gabriel Calassou ◽  
Pierre-Yves Foucher ◽  
Jean-François Léon

Stack emissions from the industrial sector are a subject of concern for air quality. However, the characterization of the stack emission plume properties from in situ observations remains a challenging task. This paper focuses on the characterization of the aerosol properties of a steel plant stack plume through the use of hyperspectral (HS) airborne remote sensing imagery. We propose a new method, based on the combination of HS airborne acquisition and surface reflectance imagery derived from the Sentinel-2 Multi-Spectral Instrument (MSI). The proposed method detects the plume footprint and estimates the surface reflectance under the plume, the aerosol optical thickness (AOT), and the modal radius of the plume. Hyperspectral surface reflectances are estimated using the coupled non-negative matrix factorization (CNMF) method combining HS and MSI data. The CNMF reduces the error associated with estimating the surface reflectance below the plume, particularly for heterogeneous classes. The AOT and modal radius are retrieved using an optimal estimation method (OEM), based on the forward model and allowing for uncertainties in the observations and in the model parameters. The a priori state vector is provided by a sequential method using the root mean square error (RMSE) metric, which outperforms the previously used cluster tuned matched filter (CTMF). The OEM degrees of freedom are then analysed, in order to refine the mask plume and to enhance the quality of the retrieval. The retrieved mean radii of aerosol particles in the plume is 0.125 μμm, with an uncertainty of 0.05 μμm. These results are close to the ultra-fine mode (modal radius around 0.1 μμm) observed from in situ measurements within metallurgical plant plumes from previous studies. The retrieved AOT values vary between 0.07 (near the source point) and 0.01, with uncertainties of 0.005 for the darkest surfaces and above 0.010 for the brightest surfaces.


2021 ◽  
Vol 11 (15) ◽  
pp. 6701
Author(s):  
Yuta Sueki ◽  
Yoshiyuki Noda

This paper discusses a real-time flow-rate estimation method for a tilting-ladle-type automatic pouring machine used in the casting industry. In most pouring machines, molten metal is poured into a mold by tilting the ladle. Precise pouring is required to improve productivity and ensure a safe pouring process. To achieve precise pouring, it is important to control the flow rate of the liquid outflow from the ladle. However, due to the high temperature of molten metal, directly measuring the flow rate to devise flow-rate feedback control is difficult. To solve this problem, specific flow-rate estimation methods have been developed. In the previous study by present authors, a simplified flow-rate estimation method was proposed, in which Kalman filters were decentralized to motor systems and the pouring process for implementing into the industrial controller of an automatic pouring machine used a complicatedly shaped ladle. The effectiveness of this flow rate estimation was verified in the experiment with the ideal condition. In the present study, the appropriateness of the real-time flow-rate estimation by decentralization of Kalman filters is verified by comparing it with two other types of existing real-time flow-rate estimations, i.e., time derivatives of the weight of the outflow liquid measured by the load cell and the liquid volume in the ladle measured by a visible camera. We especially confirmed the estimation errors of the candidate real-time flow-rate estimations in the experiments with the uncertainty of the model parameters. These flow-rate estimation methods were applied to a laboratory-type automatic pouring machine to verify their performance.


2004 ◽  
Vol 124 (6) ◽  
pp. 679-690 ◽  
Author(s):  
Toby W. Allen ◽  
O.S. Andersen ◽  
Benoit Roux

Proteins, including ion channels, often are described in terms of some average structure and pictured as rigid entities immersed in a featureless solvent continuum. This simplified view, which provides for a convenient representation of the protein's overall structure, incurs the risk of deemphasizing important features underlying protein function, such as thermal fluctuations in the atom positions and the discreteness of the solvent molecules. These factors become particularly important in the case of ion movement through narrow pores, where the magnitude of the thermal fluctuations may be comparable to the ion pore atom separations, such that the strength of the ion channel interactions may vary dramatically as a function of the instantaneous configuration of the ion and the surrounding protein and pore water. Descriptions of ion permeation through narrow pores, which employ static protein structures and a macroscopic continuum dielectric solvent, thus face fundamental difficulties. We illustrate this using simple model calculations based on the gramicidin A and KcsA potassium channels, which show that thermal atomic fluctuations lead to energy profiles that vary by tens of kcal/mol. Consequently, within the framework of a rigid pore model, ion-channel energetics is extremely sensitive to the choice of experimental structure and how the space-dependent dielectric constant is assigned. Given these observations, the significance of any description based on a rigid structure appears limited. Creating a conducting channel model from one single structure requires substantial and arbitrary engineering of the model parameters, making it difficult for such approaches to contribute to our understanding of ion permeation at a microscopic level.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


2001 ◽  
Author(s):  
Jie Xiao ◽  
Bohdan T. Kulakowski

Abstract Vehicle dynamic models include parameters that qualify the dependence of input forces and moments on state and control variables. The accuracy of the model parameter estimates is important for modeling, simulation, and control. In general, the most accurate method for determining values of model parameters is by direct measurement. However, some parameters of vehicle dynamics, such as suspension damping or moments of inertia, are difficult to measure accurately. This study aims at establishing an efficient and accurate parameter estimation method for developing dynamic models for transit buses, such that this method can be easily implemented for simulation and control design purposes. Based on the analysis of robustness, as well as accuracy and efficiency of optimization techniques, a parameter estimation method that integrates Genetic Algorithms and the Maximum Likelihood Estimation is proposed. Choices of output signals and estimation criterion are discussed involving an extensive sensitivity analysis of the predicted output with respect to model parameters. Other experiment-related aspects, such as imperfection of data acquisition, are also considered. Finally, asymptotic Cramer-Rao lower bounds for the covariance of estimated parameters are obtained. Computer simulation results show that the proposed method is superior to gradient-based methods in accuracy, as well as robustness to the initial guesses and measurement uncertainty.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1242
Author(s):  
Jiangyi Lv ◽  
Hongwen He ◽  
Wei Liu ◽  
Yong Chen ◽  
Fengchun Sun

Accurate and reliable vehicle velocity estimation is greatly motivated by the increasing demands of high-precision motion control for autonomous vehicles and the decreasing cost of the required multi-axis IMU sensors. A practical estimation method for the longitudinal and lateral velocities of electric vehicles is proposed. Two reliable driving empirical judgements about the velocities are extracted from the signals of the ordinary onboard vehicle sensors, which correct the integral errors of the corresponding kinematic equations on a long timescale. Meanwhile, the additive biases of the measured accelerations are estimated recursively by comparing the integral of the measured accelerations with the difference of the estimated velocities between the adjacent strong empirical correction instants, which further compensates the kinematic integral error on short timescale. The algorithm is verified by both the CarSim-Simulink co-simulation and the controller-in-the-loop test under the CarMaker-RoadBox environment. The results show that the velocities can be accurately and reliably estimated under a wide range of driving conditions without prior knowledge of the tire-model and other unavailable signals or frequently changeable model parameters. The relative estimation error of the longitudinal velocity and the absolute estimation error of the lateral velocity are kept within 2% and 0.5 km/h, respectively.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1578 ◽  
Author(s):  
Hazem Al-Mofleh ◽  
Ahmed Z. Afify ◽  
Noor Akma Ibrahim

In this paper, a new two-parameter generalized Ramos–Louzada distribution is proposed. The proposed model provides more flexibility in modeling data with increasing, decreasing, J-shaped, and reversed-J shaped hazard rate functions. Several statistical properties of the model were derived. The unknown parameters of the new distribution were explored using eight frequentist estimation approaches. These approaches are important for developing guidelines to choose the best method of estimation for the model parameters, which would be of great interest to practitioners and applied statisticians. Detailed numerical simulations are presented to examine the bias and the mean square error of the proposed estimators. The best estimation method and ordering performance of the estimators were determined using the partial and overall ranks of all estimation methods for various parameter combinations. The performance of the proposed distribution is illustrated using two real datasets from the fields of medicine and geology, and both datasets show that the new model is more appropriate as compared to the Marshall–Olkin exponential, exponentiated exponential, beta exponential, gamma, Poisson–Lomax, Lindley geometric, generalized Lindley, and Lindley distributions, among others.


2019 ◽  
Vol 9 (19) ◽  
pp. 4108 ◽  
Author(s):  
Wu ◽  
Sun ◽  
Zou ◽  
Xiao ◽  
Zhai

Applying computer vision to mobile robot navigation has been studied more than twodecades. The most challenging problems for a vision-based AGV running in a complex workspaceinvolve the non-uniform illumination, sight-line occlusion or stripe damage, which inevitably resultin incomplete or deformed path images as well as many fake artifacts. Neither the fixed thresholdmethods nor the iterative optimal threshold methods can obtain a suitable threshold for the pathimages acquired on all conditions. It is still an open question to estimate the model parameters ofguide paths accurately by distinguishing the actual path pixels from the under- or oversegmentationerror points. Hence, an intelligent path recognition approach based on KPCA–BPNNand IPSO–BTGWP is proposed here, in order to resist the interferences from the complexworkspace. Firstly, curvilinear paths were recognized from their straight counterparts by means of apath classifier based on KPCA–BPNN. Secondly, an approximation method based on BTGWP wasdeveloped for replacing the curve with a series of piecewise lines (a polyline path). Thirdly, a robustpath estimation method based on IPSO was proposed to figure out the path parameters from a set ofpath pixels surrounded by noise points. Experimental results showed that our approach caneffectively improve the accuracy and reliability of a low-cost vision-guidance system for AGVs in acomplex workspace.


2018 ◽  
Vol 7 (5) ◽  
pp. 120
Author(s):  
T. H. M. Abouelmagd

A new version of the Lomax model is introduced andstudied. The major justification for the practicality of the new model isbased on the wider use of the Lomax model. We are also motivated tointroduce the new model since the density of the new distribution exhibitsvarious important shapes such as the unimodal, the right skewed and the leftskewed. The new model can be viewed as a mixture of the exponentiated Lomaxdistribution. It can also be considered as a suitable model for fitting thesymmetric, left skewed, right skewed, and unimodal data sets. The maximumlikelihood estimation method is used to estimate the model parameters. Weprove empirically the importance and flexibility of the new model inmodeling two types of aircraft windshield lifetime data sets. The proposedlifetime model is much better than gamma Lomax, exponentiated Lomax, Lomaxand beta Lomax models so the new distribution is a good alternative to thesemodels in modeling aircraft windshield data.


Sign in / Sign up

Export Citation Format

Share Document