scholarly journals Influence of Surface Morphology on Absorptivity of Light-Absorbing Materials

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Chunhui Niu ◽  
Ting Zhu ◽  
Yong Lv

Absorptivity of three kinds of surface morphology, i.e., V-type groove surface, sinusoidal surface, and random distribution, is investigated using a rigorous electromagnetic theory and a finite element method. Influences of surface contour parameters (span distance, intersection angle, and height) and light wave parameters (incident angle and wavelength) on absorptivity are numerically simulated and analyzed for the three kinds of surfaces, respectively. Absorbing spectra about three silicon wafers with different surface roughness are recorded, and the results are coincident with simulated results.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Tomosato Hioki ◽  
Yusuke Hashimoto ◽  
Eiji Saitoh

Abstract When a light wave is refracted at a boundary between two different media, it may split into two rays due to optical anisotropy, a phenomenon called birefringence. On the other hand, for a reflected light wave in an ordinary medium, the angle of reflection is always the same as the incident angle as expected from the law of reflection. Here, we report the observation of a split of reflected spin-waves, or bi-reflection of spin-waves, where a spin-wave refers to a wavy motion of electron spins in a magnetic material. We measured the spin-wave propagation in a magnetic garnet Lu2Bi1Fe3.4Ga1.6O12 by using time-resolved magneto-optical microscopy and found that the spin-wave splits in two as a result of reflection at the sample edge of an out-of-plane magnetized film. Systematic measurements combined with calculations unveiled that the bi-reflection is due to the hybridization with elastic waves.


2013 ◽  
Vol 1577 ◽  
Author(s):  
Teuku M. Roffi ◽  
Motohiko Nakamura ◽  
Kazuo Uchida ◽  
Shinji Nozaki

ABSTRACTEffect of oxygen to nickel molar ratio (O2/Ni) on the crystallinity of atmospheric pressure metal organic chemical vapor deposition (APMOCVD) grown NiO at 500°C is reported. X-ray diffraction (XRD) analysis including grazing incident angle θ of 0.6°, θ-2θ, ɸ and rocking curve scan are employed for crystallographic characterization. Furthermore, surface roughness is studied by atomic force microscopy (AFM). No evidence of diffraction peaks in X-ray grazing incident angle measurement confirms that all the grown NiO films are well oriented along a certain direction. θ-2θ scan results further indicate that the samples are highly oriented only along [111] direction on (0001) sapphire substrates. The analysis of full width at half maximum (FWHM) of rocking curve scan of (111) plane shows that higher O2/Ni ratio results in better crystallinity. The best crystallinity is achieved with FWHM as low as 0.106° at (111) rocking curve scan corresponding to 82.57nm grain size. AFM measurement shows that NiO films grown with higher O2/Ni ratio have smoother surface morphology.


Shinku ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 29-32
Author(s):  
Takashi TAGUCHI ◽  
Yuji YAMAUCHI ◽  
Yuko HIROHATA ◽  
Tomoaki HINO ◽  
Ichiro YANAGISAWA ◽  
...  

2007 ◽  
Vol 336-338 ◽  
pp. 2238-2241
Author(s):  
Ying Chun Shan ◽  
Xiao Dong He ◽  
Ming Wei Li ◽  
Yao Li

The thin film deposited by electron beam physical vapor deposition (EB-PVD) on rotating substrate was approached via a kinetic Monte Carlo (KMC) algorithm on a “surface” of tight-packed rows. The motivation is to study the surface morphology distribution of thin film along the substrate radial. Effective deposition rate model and effective incident angle model were established along the substrate radial. Two phenomena are incorporated in the KMC simulation: adatom-surface collision and adatom diffusion. The KMC simulations show that the surface roughness of thin film is small and the changing of surface roughness is small near the side of rotation axis, however, the surface roughness is big near the side of substrate edge, and the surface roughness increases quickly with the increasing of substrate radius when r>300 mm. The simulation results indicate that the effective incident angle is the main factor to cause the changing of surface roughness: the effective incident angle does not reach critical value and the deposition rate difference is small when the radius is less than 300 mm, so the surface roughness of thin film in the scope is small and its changing is small, but when r>300 mm, the effective incident angles increase sharply with radius increasing and all of them are above the critical value, which cause surface roughness of thin film to increase quickly. Experiments reveal that the KMC method can predict surface roughness distribution of thin film deposited by EB-PVD on rotating substrate.


2011 ◽  
Vol 60 (5) ◽  
pp. 057802
Author(s):  
Su Fa-Gang ◽  
Liang Jing-Qiu ◽  
Liang Zhong-Zhu ◽  
Zhu Wan-Bin

2004 ◽  
Vol 849 ◽  
Author(s):  
Hyung Seok Kim ◽  
Ju Hyung Suh ◽  
Chan Gyung Park

ABSTRACTSelf-formed nanopatterns on Si (001) substrates fabricated by ion beam sputter etching were investigated by atomic force microscopy (AFM). The ion beam sputtering was performed with an Ar+ ion beam produced from a Kaufman type ion gun. In order to fabricate the periodic nanoscale patterns on Si surface, the effects of sputter parameters such as ion energy, flux, incident angle and etching time on surface morphology was investigated. As a result, nanometer scale ripples and 3-dimensioal nanodots were formed uniformly after ion beam sputtering. The surface morphology of Si was significantly dependent on incident angle and ion beam flux.


2019 ◽  
Vol 42 ◽  
Author(s):  
Laurel Symes ◽  
Thalia Wheatley

AbstractAnselme & Güntürkün generate exciting new insights by integrating two disparate fields to explain why uncertain rewards produce strong motivational effects. Their conclusions are developed in a framework that assumes a random distribution of resources, uncommon in the natural environment. We argue that, by considering a realistically clumped spatiotemporal distribution of resources, their conclusions will be stronger and more complete.


Author(s):  
K.R. Porter

Most types of cells are known from their structure and overall form to possess a characteristic organization. In some instances this is evident in the non-random disposition of organelles and such system subunits as cisternae of the endoplasmic reticulum or the Golgi complex. In others it appears in the distribution and orientation of cytoplasmic fibrils. And in yet others the organization finds expression in the non-random distribution and orientation of microtubules, especially as found in highly anisometric cells and cell processes. The impression is unavoidable that in none of these cases is the organization achieved without the involvement of the cytoplasmic ground substance (CGS) or matrix. This impression is based on the fact that a matrix is present and that in all instances these formed structures, whether membranelimited or filamentous, are suspended in it. In some well-known instances, as in arrays of microtubules which make up axonemes and axostyles, the matrix resolves itself into bridges (and spokes) between the microtubules, bridges which are in some cases very regularly disposed and uniform in size (Mcintosh, 1973; Bloodgood and Miller, 1974; Warner and Satir, 1974).


Author(s):  
Corazon D. Bucana

In the circulating blood of man and guinea pigs, glycogen occurs primarily in polymorphonuclear neutrophils and platelets. The amount of glycogen in neutrophils increases with time after the cells leave the bone marrow, and the distribution of glycogen in neutrophils changes from an apparently random distribution to large clumps when these cells move out of the circulation to the site of inflammation in the peritoneal cavity. The objective of this study was to further investigate changes in glycogen content and distribution in neutrophils. I chose an intradermal site because it allows study of neutrophils at various stages of extravasation.Initially, osmium ferrocyanide and osmium ferricyanide were used to fix glycogen in the neutrophils for ultrastructural studies. My findings confirmed previous reports that showed that glycogen is well preserved by both these fixatives and that osmium ferricyanide protects glycogen from solubilization by uranyl acetate.I found that osmium ferrocyanide similarly protected glycogen. My studies showed, however, that the electron density of mitochondria and other cytoplasmic organelles was lower in samples fixed with osmium ferrocyanide than in samples fixed with osmium ferricyanide.


Sign in / Sign up

Export Citation Format

Share Document