scholarly journals Matching, Stability, and Vibration Analysis of Nonlinear Suspension System for Truck Cabs

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Fuxing Yang ◽  
Leilei Zhao ◽  
Yuewei Yu ◽  
Changcheng Zhou

To improve comfort, a nonlinear suspension system is proposed on the basis of the nonlinear vibration isolation theory and the installation space of the cab suspension system for trucks. This system is suitable for all-floating cabs. For easy matching and design, the static and stability characteristics of the suspension system were analyzed, respectively, and the boundary condition for the stability of the system was given. Moreover, the cab simulation model was established, and the dynamic simulation was conducted. The stability analysis shows that the smaller the vibration excitation of the cab system, the higher its stability is. The dynamic simulation results show that the acceleration of the cab with the nonlinear suspension system is effectively suppressed; the dynamic deflection of the suspension is kept within a certain range, and the design space of the suspension stroke can be effectively utilized. Compared with the traditional linear suspension system, the nonlinear suspension system has better vibration isolation characteristics and can effectively improve ride comfort.

Author(s):  
Audrey Rizzo ◽  
Xavier Moreau ◽  
Alain Oustaloup ◽  
Vincent Hernette

In a vibration isolation context, fractional derivative can be used to design suspensions which allow to obtain similar performances in spite of parameters uncertainties. This paper presents the synthesis and the achievement of a new Hydractive CRONE suspension system. After the study of the different constraint in suspension in the first paper, the ideal transfer function of the hydractive CRONE suspension is created and simulated in different case. Then a method to determine the technological parameters is proposed. A parallel arrangement of dissipative and capacitive components and a gamma arrangement are compared. They lead to the same unusual performances: the stability degree robustness and the rapidity robustness.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Liwei Ni ◽  
Fangwu Ma ◽  
Linhe Ge ◽  
Liang Wu

Abstract This paper presents a novel solution for the posture control and ride comfort between the proposed wheel-legged robot (four wheel-legged robot (FWLR)) and the unstructured terrain by means of an actively passively transformable suspension system. Unlike most traditional robots, each leg of FWLR is independent of each other with a spring-damping system (passive system) is connected in series with an actuator (active system), so the posture control and ride comfort in complex terrain can be realized by the combination between active and passive systems. To verify the performance of posture control in complex terrain, a prototype and complex terrain are established first, then a posture control model, algorithm, and controller considering the suspension system are proposed and verified by the comparison between co-simulation and experiment, the results showed that the pitch angle and roll angles in complex terrain can be controlled. To show the impact of the actively passively transformable suspension system on ride comfort (vibration isolation performance), different dynamic models with different degree-of–freedom (DOF) are established, the co-simulation results showed that the passive system and active posture control system can also effectively improve the ride comfort of FWLR in complex terrain. The research results of this paper have important reference significance and practical value for enriching and developing the mechanism design and theoretical research of wheel-legged robot and promoting the engineering application of all-terrain robot.


2014 ◽  
Vol 686 ◽  
pp. 529-534
Author(s):  
Jian Xin Xie ◽  
Xiao Le Wang ◽  
Chao Liu

In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to research the vibration isolation of the engine mounting system and implement multi-objective optimization for the intrinsic frequency. In this paper, the optimization was implemented in two ways: (1) the intrinsic frequency was optimized by reasonably allocating it: (2) the intrinsic frequency was optimized using energy decoupling. The optimized intrinsic frequencies were simulated using software Adams and then the simulation results were compared. The simulation results showed that the optimized energy distribution was almost up to 90% and the decoupling degree was greatly improved by comparing the initial data, proving the optimized data played a greater effect on engine vibration isolation and further verifying the feasibility of optimization design method.


2013 ◽  
Vol 471 ◽  
pp. 247-252
Author(s):  
Wajdi S. Aboud ◽  
Sallehuddin Mohamed Haris

The main goal of using mechatronic suspensions is to improve the ride comfort and handling performance. In this work, a robust linear controller for such a system was designed based on the μ synthesis method. The performance of a model two degree of freedom quarter car with parameter perturbations, subjected to road disturbances, was simulated and the time domain responses were analyzed. The simulation results indicate that the robust controller improved the vibration isolation performance of the mechatronic suspension system, despite the presence of parameter perturbations and exogenous disturbances. When compared to both LQG active control and to a passive suspension system, the μ synthesis controller also showed super or performance.


Author(s):  
Jian Jun Zhu ◽  
Amir Khajepour ◽  
Ebrahim Esmailzadeh

A planar suspension system (PSS) has spring-damping struts in both the vertical and longitudinal directions so that the vibrations and shocks caused by road obstacles in any direction within the wheel plane can be effectively absorbed. Consequently, the ride comfort of a PSS vehicle can be improved considerably compared to a conventional vehicle. For a vehicle with such suspension systems, however, the wheels can move forth and back with respect to the chassis. The dynamic behaviors of a PSS vehicle under some special conditions, such as a split-μ turning combined with braking operation, may exhibit different characteristics. This paper presents the study of the transient response of a vehicle with PSS in such a case. The simulation results are also compared with those of a similar vehicle with conventional suspension under the same operational condition. The study demonstrates that the handling behavior of a PSS vehicle is generally comparable with, and in some conditions, even better than that of a conventional vehicle.


2011 ◽  
Vol 128-129 ◽  
pp. 1460-1463 ◽  
Author(s):  
Chao Dai ◽  
Ji Hui Liang

Ride comfort is one of the main using performance items and competitiveness index of the automobile. This paper carries out shock absorption performance experiment for a certain light truck cab suspension system to study the shock attenuation rate of the four suspension points of the cab when it is under no-load and full-load status running with speed of respectively 40,50,60,70,80 km /h, as well as under the idle speed status. The result shows that the shock attenuation rates of the front cab suspension points under various conditions are low. And the shock attenuation rate of the back cab suspension points at Z direction is low. Front and back cab suspension points have no attenuation to low frequency shock. It is suggested that the cab suspension rigidity needs to be re-matched.


2020 ◽  
Vol 25 (4) ◽  
pp. 504-512
Author(s):  
Robert Pierce ◽  
Sudhir Kaul ◽  
Jacob Friesen ◽  
Thomas Morgan

This paper presents experimental results from the development of a rear suspension system that has been designed for a mountain bike. A magnetorheological (MR) damper is used to balance the need of ride comfort with performance characteristics such as handling and pedaling efficiency by using active control. A preliminary seven degree-of-freedom mathematical model has also been developed for the suspension system. Two control algorithms have been tested in this study: on/off control and proportional control. The rear suspension system has been integrated into an existing bike frame and tested on a shaker table as well as a mountain trail. Shaker table testing demonstrates the effectiveness of the damper. Trail testing indicates that the MR damper-based shock absorber can be used to implement different control algorithms. Test results indicate that the control algorithm can be further investigated to accommodate rider preferences and desired performance characteristics.


2011 ◽  
Vol 141 ◽  
pp. 364-369 ◽  
Author(s):  
Liang He ◽  
Si Hong Zhu ◽  
Hong Ling Zhu

Two kinds of full-float tractor cab suspension systems based on double crank mechanism and double rocking bar mechanism respectively for a power tractor safety cab was designed. CAD model of the tractor with cab was modeled by using Pro/E. The model was import into ADAMS, and virtual prototype of the tractor with cab suspension system was established. When stiffness and damping of tyres were set fixed, two kinds of suspension system were mounted to the cab. The vibration isolation performance of the two kinds of tractor cab suspension system was studied respectively when stiffness of cab suspension system changed from 20 N/mm to 200N/mm. Both harmonic excitation and a random road roughness excitation were applied vertically to the places where the tyres were mounted. The random road roughness excitation was simulated by using MATLAB/simulink. The simulation results showed that the comfort of the full-float tractor cab with suspension based on double rocking bar mechanism was better than the cab with suspension based on double crank bar mechanism. Therefore, the analysis results provided a basis for designing mechanism of full-float cab suspension system for power tractors.


Sign in / Sign up

Export Citation Format

Share Document