scholarly journals Forced Air Precooling Enhanced Storage Quality by Activating the Antioxidant System of Mango Fruits

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Li ◽  
Yingli Fu ◽  
Jiaqi Yan ◽  
Huanlu Song ◽  
Weibo Jiang

Effects of forced air precooling on storage quality and physiological metabolism of mangoes were evaluated in this study. Mango fruits were forced air precooled for 30 min at 0°C and then stored at 13°C. Control fruits were stored at 13°C directly. Results showed that forced air precooling treatment maintained fruit firmness, inhibited fruit peel coloration, retarded hydrolysis of polysaccharide to soluble sugar, and decreased fruit decay during storage. Biochemical studies revealed that precooling treatment could eliminate reactive oxygen species (ROS) effects by enhancing related antioxidant enzyme activities, such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), and polyphenoloxidase (PPO). They all contributed to the delay of mango fruit ripening and senescence in storage. These results indicate that forced air precooling treatment could maintain mango fruit quality by enhancing antioxidant activity and delaying fruit ripening.

Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 632
Author(s):  
Aihua Wang ◽  
Chao Ma ◽  
Hongye Ma ◽  
Zhilang Qiu ◽  
Xiaopeng Wen

Pitaya (Hylocereus polyrhizus L.) is highly tolerant to drought stress. Elucidating the response mechanism of pitaya to drought will substantially contribute to improving crop drought tolerance. In the present study, the physiological and proteomic responses of the pitaya cultivar ‘Zihonglong’ were compared between control seedlings and seedlings exposed to drought stress (−4.9 MPa) induced by polyethylene glycol for 7 days. Drought stress obviously enhanced osmolyte accumulation, lipid peroxidation, and antioxidant enzyme activities. Proteomic data revealed drought stress activated several pathways in pitaya, including carbohydrate and energy metabolism at two drought stress treatment time-points (6 h and 3 days). Other metabolic pathways, including those related to aspartate, glutamate, glutathione, and secondary metabolites, were induced more at 3 days than at 6 h, whereas photosynthesis and arginine metabolism were induced exclusively at 6 h. Overall, protein expression changes were consistent with the physiological responses, although there were some differences in the timing. The increases in soluble sugar contents mainly resulted from the degradation and transformation of insoluble carbohydrates. Differentially accumulated proteins in amino acid metabolism may be important for the conversion and accumulation of amino acids. GSH and AsA metabolism and secondary metabolism may play important roles in pitaya as enzymatic and nonenzymatic antioxidant systems. The enhanced carbohydrate and energy metabolism may provide the energy necessary for initiating the above metabolic pathways. The current study provided the first proteome profile of this species exposed to drought stress, and may clarify the mechanisms underlying the considerable tolerance of pitaya to drought stress.


2021 ◽  
Vol 78 (2) ◽  
pp. 765-774
Author(s):  
Minmin Jing ◽  
Bingyu Huang ◽  
Wen Li ◽  
Jiaoke Zeng ◽  
Yuanzhi Shao

2015 ◽  
Vol 8 (1) ◽  
pp. 68
Author(s):  
B. Chutichudet ◽  
Prasit Chutichudet ◽  
Usana Trainoak

<p>‘Maha Chanok’<strong> </strong>mango is an economic fruit crop widely cultivated commercially throughout Thailand. By nature, mango fruit has a rather limited storage life after harvest. 1-methylcyclopropene (1-MCP) has been accepted as a commercial substance to improve several fruit qualities. The objective of this research was to study the effects of 1-MCP on the external postharvest qualities and storage life on the ‘Maha Chanok’ mango fruit. The experiment was laid out in a Completely Randomized Design with three replicates, ten fruits per replicate. Mango fruit was fumigated with 1-MCP at three concentrations (1000, 1250, or 1500 nl l<sup>-1</sup>) and three fumigation periods (12, 18, or 24 h), compared with the control fruit. After treating, all treatments were stored under ambient temperature (27 °C, 80%R.H.). The following determinations were made every two days for assessment of fruit weight loss, firmness, chlorophyll content, decay incidence, and storage life. The results showed that fruit treated with 1500 nl l<sup>-1</sup><strong> </strong>1-MCP for 24 h had the maximal fruit firmness. For chlorophyll content, the results showed that fruit-treated with 1500 nl l<sup>-1</sup><strong> </strong>1-MCP for 12 h could effectively retain the highest chlorophyll contents. Furthermore, both the lowest fruit decay and the longest storage life of 12 days were achieved from the fruit treated with 1000 nl l<sup>-1</sup><strong> </strong>1-MCP for 12 h.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Gabriela Gambato ◽  
Elisa Maria Pavão ◽  
Gabriela Chilanti ◽  
Roselei Claudete Fontana ◽  
Mirian Salvador ◽  
...  

Hyperglycaemia exacerbates the production of reactive oxygen species (ROS), contributing to the multiple complications associated with diabetes. Mitochondrial dysfunction is also known to be associated with diabetes. Therefore, the aim of this work was to study the effect of Pleurotus albidus extract on the mitochondrial dysfunction induced by hyperglycaemia in EA.hy926 endothelial cells. The results showed that P. albidus treatment prevented the increase in the activity of complex I of the electron transport chain and minimized the ROS production induced by hyperglycaemia. In addition, the extract minimized oxidative damage to lipids and proteins, caused an imbalance in the antioxidant enzyme activities of superoxide dismutase and catalase, and decreased the nitric oxide levels induced by hyperglycaemia. These data contribute to our understanding of the mitochondrial disorder induced by hyperglycaemia as well as establishing the conditions required to minimize these alterations.


2019 ◽  
Vol 37 (4) ◽  
pp. 437
Author(s):  
Adriana Mellado-Vázquez ◽  
Samuel Salazar-García ◽  
Ricardo Goenaga ◽  
Alfredo López-Jiménez

In Mexico there are more than 201 400 ha grown with different mango (Mangifera indica L.) cultivars. This may cause variations in mineral requirement, fruit mineral concentrations and nutrient removal. The objective of this research was to make a survey of mineral concentration in fruit tissues and calculate nutrient removal by fruit tissues during harvest of the most important mango cultivars (Ataulfo, Kent and Tommy Atkins) from several production regions (Campeche, Chiapas, Oaxaca, Nayarit, and Sinaloa) of Mexico. Fruit at physiological maturity were harvested from commercial mango orchards and concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), copper (Cu), manganese (Mn), zinc (Zn) and boron (B) was determined for skin, mesocarp, endocarp, and seed tissues. Each tissue was cut into thin slices and they were dehydrated in a forced air oven at 70 °C, after that, were pulverized and they were analyzed: nitrogen by semi-microKjeldahl digestion, phosphorus with the ascorbic acid method and the other nutrients with atomic absorption. The removal of nutrients was calculated considering the weight of the fruit and the content of nutrients in each tissue. Signif icant differences in the concentration of N, K, Mg, and Zn were found among cultivars and tissues. Concentration of P, S, Cu, and Mn in the skin, Ca, Cu, and Mn in the mesocarp, Ca, S, Mn, and B in endocarp, and S, Fe, and Mn in the seed were not affected by mango cultivar. Production region affected concentration of minerals in ‘Ataulfo’ fruit more than in ‘Tommy Atkins’ and ‘Kent’. Nutrient removal by mango fruit tissues was little affected in cvs. Ataulfo, Tommy Atkins and Kent. The regions with the greatest nutrient removal were Oaxaca, Campeche and Sinaloa for ‘Ataulfo’, ‘Tommy Atkins’ and ‘Kent’, respectively.


2020 ◽  
Vol 259 ◽  
pp. 108836 ◽  
Author(s):  
Duo Lai ◽  
Xuehua Shao ◽  
Weiqiang Xiao ◽  
Chao Fan ◽  
Chuanhe Liu ◽  
...  

2011 ◽  
Vol 108 ◽  
pp. 244-250
Author(s):  
Wei Dong Bai ◽  
Wen Hong Zhao ◽  
Zhou Min Lu ◽  
Xue Dan Cao ◽  
Zhong Liang Zhang

In order to study the effects of Gibberellins (GA3) treatment on fresh-keeping effect and storage quality, provide theoretical foundation for loquat production, the loquat fruit grown in Guangdong Province were separated in groups and dipped in different concentrations (10, 50, 100 μmol/L) of GA3 solution respectively for 20 min, and then stored at a chamber with temperature of 3±0.5°C, relative humidity of 65~80%. The rotten index, flesh hardness, weight-loss ratio, contents of total soluble solids, soluble sugar, titrable acidity and vitamin C were measured periodically. The results show that by GA3 treatment ,the rotten index and flesh firmness of loquat fruit decrease significantly, and storage time of loquat lengthen effectively. It also indicate the content of titrable acidity can be greatly reserved to some extent by 10 μmol/L GA3 treatment, and the loss of vitamin C content drop highly, generating better flavor and quality of loquat fruit.


2017 ◽  
Vol 9 (8) ◽  
pp. 155
Author(s):  
Ying-zhi Li ◽  
Xiao-qiang Duan ◽  
Sheng-hui Liu ◽  
Ying Li ◽  
Xing-hai Zhang ◽  
...  

Jackfruit (Artocarpus heterophyllus Lam.) is an important food crop widely grown in the tropical region. However, little is known about sugar metabolism during fruit ripening of jackfruit. Here we examined sugar profiles (sucrose, glucose and fructose) and corresponding enzyme activities (SPS, E.C.2.4.1.14; SuSy, EC 2.4.1.13; IV, EC 3.2.1.26) of four soft type and four firm type varieties of jackfruit during four stages of fruit ripening. We found that during fruit ripening, there was a rapid increase in contents of total soluble sugar and sucrose, whereas increases in glucose and fructose contents were much slower. Ratios of glucose versus fructose varied among different varieties and ripening stages but within the range of 0.9 to 1.2 in the ripe fruits. Five of these varieties exhibited markedly high levels of SuSy activity for sucrose synthesis at early ripening stage, and then decreased towards fully ripe stage. All soft type varieties exhibited a conspicuous peak of AIV activity and had overall higher AIV activities than NIV during ripening. The changing patterns for other enzymes varied among varieties. Our studies support the notion that sucrose was the major sugar species contributing to the fruit sweetness, followed by fructose and glucose. We also demonstrated that AIV and NIV were probably the primary enzymes responsible for sucrose hydrolysis during ripening, while SPS and SuSy were responsible for sucrose synthesis. We propose that during fruit ripening of jackfruit, glucose is released from starch hydrolysis, followed by sucrose hydrolysis leading to increase in both glucose and fructose contents.


2020 ◽  
Vol 71 (20) ◽  
pp. 6311-6327
Author(s):  
Lincheng Zhang ◽  
Jing Kang ◽  
Qiaoli Xie ◽  
Jun Gong ◽  
Hui Shen ◽  
...  

Abstract Ethylene signaling pathways regulate several physiological alterations that occur during tomato fruit ripening, such as changes in colour and flavour. The mechanisms underlying the transcriptional regulation of genes in these pathways remain unclear, although the role of the MADS-box transcription factor RIN has been widely reported. Here, we describe a bHLH transcription factor, SlbHLH95, whose transcripts accumulated abundantly in breaker+4 and breaker+7 fruits compared with rin (ripening inhibitor) and Nr (never ripe) mutants. Moreover, the promoter activity of SlbHLH95 was regulated by RIN in vivo. Suppression of SlbHLH95 resulted in reduced sensitivity to ethylene, decreased accumulation of total carotenoids, and lowered glutathione content, and inhibited the expression of fruit ripening- and glutathione metabolism-related genes. Conversely, up-regulation of SlbHLH95 in wild-type tomato resulted in higher sensitivity to ethylene, increased accumulation of total carotenoids, slightly premature ripening, and elevated accumulation of glutathione, soluble sugar, and starch. Notably, overexpression of SlbHLH95 in rin led to the up-regulated expression of fruit ripening-related genes (FUL1, FUL2, SAUR69, ERF4, and CNR) and multiple glutathione metabolism-related genes (GSH1, GSH2, GSTF1, and GSTF5). These results clarified that SlbHLH95 participates in the regulation of fruit ripening and affects ethylene sensitivity and multiple metabolisms targeted by RIN in tomato.


Sign in / Sign up

Export Citation Format

Share Document