scholarly journals Suppression of Gut Bacterial Translocation Ameliorates Vascular Calcification through Inhibiting Toll-Like Receptor 9-Mediated BMP-2 Expression

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yang Zhao ◽  
Yan Cai ◽  
Li-Yan Cui ◽  
Wen Tang ◽  
Bo Liu ◽  
...  

Aims. Vascular calcification (VC) is a primary risk factor for cardiovascular mortality in chronic renal failure (CRF) patients; thus, effective therapeutic targets are urgently needed to be explored. Here, we identified the role of intestinal bacterial translocation in CRF-related VC. Methods and Results. Antibiotic supplementation by oral gavage significantly suppressed intestinal bacterial translocation, CRF-related VC, and aortic osteogenic gene and Toll-like receptor (TLR) gene expression in CRF rats. Furthermore, TLR4 and TLR9 activation in vascular smooth muscle cells (VSMCs) aggravated inorganic phosphate- (Pi-) induced calcification. TLR9 inhibition, but not TLR4 inhibition, by both a pharmacological inhibitor and genetic methods could significantly reduce CRF rats’ serum or CRF-induced VC. Interestingly, bone morphogenic protein-2 (BMP-2) levels were increased in the aorta and sera from CRF rats. Increased BMP-2 levels were also observed in VSMCs treated with TLR9 agonist, which was blocked by NF-κB inhibition. Both siRNA knockdown of BMP-2 and NF-κB inhibitor significantly blocked TLR9 agonist-induced VSMC calcification. Conclusions. Gut bacterial translocation inhibited by oral antibiotic significantly reduces CRF-related VC through inhibition of TLR9/NF-κB/BMP-2 signaling.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1113-1113
Author(s):  
Radoslaw Kaczmarek ◽  
Alexandra Sherman ◽  
Moanaro Biswas ◽  
Roland W Herzog

Inhibitor (neutralizing anti-drug antibody) formation against factor VIII (FVIII) is currently the most serious complication of FVIII replacement therapy for hemophilia A. The role of innate immune signals in this adaptive immune response is unclear. Lipopolysaccharide (LPS, the major component of the outer membrane in Gram-negative bacteria), which activates the innate immune sensor toll-like receptor 4 (TLR4), enhances inhibitor formation in hemophilia A mice. Intriguingly, earlier data suggested that activation of the endosomal DNA sensor TLR9 may actually suppress inhibitor formation. However, we demonstrated that a TLR9 agonist induced inhibitor formation against a factor IX transgene product in gene therapy for hemophilia B, which resulted from activation of monocyte-derived dendritic cells (moDCs) and enhancement of T follicular helper (Tfh) cell responses. Tfh cells drive germinal center (GC) formation and T cell help-dependent antibody formation. The aim of this study was to elucidate the role of TLR9 signaling in FVIII inhibitor formation in hemophilia A mice. Hemophilia A (F8e16-/-) B6/129 mice were co-injected IV (n=4) with FVIII (1.5 IU) and ODN-1826 (a class B CpG oligodeoxynucleotide, 50 µg), which is a TLR9 agonist, or injected on two consecutive days (n=3), first with ODN-1826 and then with FVIII on the next day. Control mice received FVIII only (n=5). Injections were performed once weekly for 4 weeks. Blood samples, spleens and subiliac (superficial inguinal) lymph nodes were collected for ELISA and Bethesda assays, and flow cytometry analysis. In our analysis, Tfh were defined as CD4+CXCR5+PD1+Bcl6- cells, while GC B cells were defined as CD19+GL7+CD95+. Tfh cell response and GC formation in the spleen were robustly enhanced by the TLR9 agonist compared to mice injected with FVIII only (2-fold for Tfh frequencies and 6-fold for GC B cells when co-injected; P< 0.05). As a result, inhibitor titers increased >400-fold (on average from 6.4 to 2746.5 BU/ml). In contrast, anti-FVIII IgG1 levels increased only 2.5-fold. The differences between mice injected on two consecutive days and the FVIII-only group were not statistically significant. A time-course experiment was also carried out to monitor progress of immune response to FVIII (1.5 IU administered once weekly) in the absence of TLR9 agonist over time: 4 (n=4), 6 (n=4) and 8 weeks (n=5) after the initial antigen challenge. Inhibitor titers continued to rise beyond the fourth week of antigen challenges, reaching 46-fold higher values at eighth week (from 3 BU/ml in the fourth week to 138 BU/ml in the eighth week, p<0.05), while anti-FVIII IgG1 levels increased 2.5-fold (ns). These results suggest that the TLR9 agonist sped up the neutralizing response to FVIII, which otherwise progressed in the same manner (towards more neutralizing versus total anti-FVIII) but at a slower rate. Overall, TLR9 activation enhanced GC formation and accelerated neutralizing immune response to FVIII. Similar results were obtained in hemophilia A mice on a different strain background (F8e16-/- BALB/c). We propose that signaling via the innate immune receptor TLR9 leads to a more targeted immune response by reinforcing Tfh activation, likely through moDC activation, which results in enhanced germinal center formation and thus accelerated development of neutralizing antibodies. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 56 (08) ◽  
pp. e254-e255
Author(s):  
J Zhang ◽  
A Wieser ◽  
H Li ◽  
I Liß ◽  
AL Gerbes ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 737
Author(s):  
Marko Kumric ◽  
Josip A. Borovac ◽  
Tina Ticinovic Kurir ◽  
Dinko Martinovic ◽  
Ivan Frka Separovic ◽  
...  

Coronary artery disease (CAD) is widely recognized as one of the most important clinical entities. In recent years, a large body of accumulated data suggest that coronary artery calcification, a process highly prevalent in patients with CAD, occurs via well-organized biologic processes, rather than passively, as previously regarded. Matrix Gla protein (MGP), a vitamin K-dependent protein, emerged as an important inhibitor of both intimal and medial vascular calcification. The functionality of MGP hinges on two post-translational modifications: phosphorylation and carboxylation. Depending on the above-noted modifications, various species of MGP may exist in circulation, each with their respective level of functionality. Emerging data suggest that dysfunctional species of MGP, markedly, dephosphorylated-uncarboxylated MGP, might find its application as biomarkers of microvascular health, and assist in clinical decision making with regard to initiation of vitamin K supplementation. Hence, in this review we summarized the current knowledge with respect to the role of MGP in the complex network of vascular calcification with concurrent inferences to CAD. In addition, we discussed the effects of warfarin use on MGP functionality, with concomitant implications to coronary plaque stability.


2021 ◽  
Vol 7 (9) ◽  
pp. eabc4898
Author(s):  
Yvette Zarb ◽  
Sucheta Sridhar ◽  
Sina Nassiri ◽  
Sebastian Guido Utz ◽  
Johanna Schaffenrath ◽  
...  

Microglia participate in central nervous system (CNS) development and homeostasis and are often implicated in modulating disease processes. However, less is known about the role of microglia in the biology of the neurovascular unit (NVU). In particular, data are scant on whether microglia are involved in CNS vascular pathology. In this study, we use a mouse model of primary familial brain calcification, Pdgfbret/ret, to investigate the role of microglia in calcification of the NVU. We report that microglia enclosing vessel calcifications, coined calcification-associated microglia, display a distinct activation phenotype. Pharmacological ablation of microglia with the CSF1R inhibitor PLX5622 leads to aggravated vessel calcification. Mechanistically, we show that microglia require functional TREM2 for controlling vascular calcification. Our results demonstrate that microglial activity in the setting of pathological vascular calcification is beneficial. In addition, we identify a previously unrecognized function of microglia in halting the expansion of vascular calcification.


2021 ◽  
Vol 1879 (2) ◽  
pp. 022012
Author(s):  
Furqan Naeem Al-Karawi ◽  
Naji Al-Hasnawiand Abeer Thaher ◽  
Thekra Abd Jebur Al-Kashwan

Sign in / Sign up

Export Citation Format

Share Document