scholarly journals Investigation of the Effect of Larestan’s Pipeline Water on the Mechanical Properties of Concretes Containing Granite Aggregates

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Masoud Forsat ◽  
S. S. Mirjavadi ◽  
A. M. S. Hamouda

In this study, the compressive strength of the concretes made by the pipeline water of Larestan has been investigated. Although the used water for the concretes must be clean, standard, and generally drinkable water, in Larestan city, the pipeline water is nonpotable water; meanwhile, this type of water is still being used in the mixture of the concretes by companies and contractors. Since in the initial tests the compressive strength of the normal samples did not satisfy the standards, 50% of granite aggregate was replaced with the purpose of increasing strength of the samples. Then four types of samples were made, which are (1) normal concrete with pipeline water, (2) normal concrete with potable water, (3) granite concrete with pipeline water, and (4) granite concrete with potable water. The results showed that the compressive strength of normal samples is not standard in the case of using the pipeline water. This issue can be seen during the first four weeks of the samples, whereas these samples are placed in the standard zone by replacing 50% of granite aggregate instead of normal aggregates. This may be attributed to the compensating effect of granite aggregates in opposition to damaging effect of water. Also, by using the granite aggregates in the mixture, the compressive strengths of the samples were standard and almost identical in both cases of pipeline water and tap water. As a result, the concretes made in this city must include additives for increasing the strength, or the tap water should be used as a replacement for pipeline water.

Author(s):  
Ignatius Omuh ◽  
Rapheal Ojelabi ◽  
Adedeji Afolabi ◽  
Patience Tunji-Olayeni ◽  
Chukwuma Obi ◽  
...  

Water is vital to human existence and life can only be sustained by it. Concrete is a widely used construction material and water is an important part of its composition. Potable water is what is recommended for concrete works, but unfortunately, some places do not have access to this. Places that do not have access to potable water might have access to other water sources that might be used for concrete works. This study was undertaken to investigate the effects of water from different sources on concrete mechanical properties. This study evaluates the characteristics of concrete produced with river water, well water, and potable tap water. Compressive strength and Density, were used to evaluate the characteristics of concrete specimens of mix ratios 1:2:4 and 1: 1 1/2 :3 produced with water from the different sources. The results showed that concrete specimens produced with tap water had the highest mean compressive strength at 28 days. While well water had the lowest compressive strength, it was concluded that well water was not suitable for concrete works even though it is already being used on some sites that can’t access tap water.


2018 ◽  
Vol 24 (1) ◽  
pp. 71
Author(s):  
Widodo Kushartomo ◽  
Dewi Permata Sari

This study is describe about the mechanical properties of normal concrete by adding of marble flour based on the mixed plan made. The compressive strength of the planned test object fc '20.0 and fc' 30.0 MPa was prepared by using the ACI method. The addition of marble flour in a concrete mixture varies from 0%, 5%, 10%, 15%, 20% and 25% to the weight of the cement used. Concrete test specimens were made in the form of cylinders 15.0 cm in diameter, 30.0 cm in height and made in the form of concrete beams measuring 15.0 cm x 15.0 cm x 75.0 cm, the type of mechanical testing performed in the form of compressive strength tests on cylindrical specimen, split tensile strength test on cylindrical specimen and flexure test on beam specimen. Curing is done by immersion technique at 25ºC and the test is done when the concrete is 28 days old. The test results show that the addition of marble flour to the normal concrete mixture can increase its mechanical properties by 26% for compressive strength, 24% for split tensile strength, and 17% for flexural strength. 


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


The abundant availability of demolition waste from construction industry is leading towards a significant problem of disposal, land and air pollution. The natural aggregate resources are also depleting due to development of construction activities. An attempt is made in this study to convert this waste into wealth by substituting the recycled brick from demolition waste to granite aggregate in production of the concrete. The granite aggregate (GA) is replaced with recycled brick aggregate (RBA) by 25% of its weight to produce M15 and M20 grades of concrete. The granite aggregate concrete (GAC) and recycled brick aggregate concrete (RBAC) were subjected to different temperatures between 100 to 1000oC for a duration of 3 hours and the mechanical properties such as compressive strength and flexural strength were examined to assess its fire performance. The response of RBAC is better than GAC at each temperature. The study revealed that the residual strength increases with the increase in grade of concrete at all temperatures.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1985-1989
Author(s):  
Jia Bin Wang ◽  
Di Tao Niu ◽  
Rui Ma ◽  
Ze Long Mi

In order to investigate the carbonation resistance of shotcrete and the mechanical properties after carbonation, the accelerated carbonation test was carried out. The results indicate that the carbonation resistance of shotcrete is superior to that of normal concrete. With the increasing of carbonation depth, compressive strength and splitting tensile strength of shotcrete grew rapidly. The admixing of steel fiber can further improve the carbonation resistance, reduce the carbonation rate, and increase the splitting tensile strength of shotcrete greatly. Besides, based on analyzing the effects of construction technology and steel fiber of concrete for the carbonation resistance, a carbonation depth model for shotcrete was established. Key words: shotcrete; carbonation; steel fiber; mechanical properties


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jianxiu Wang ◽  
Tianrong Huang ◽  
Xiaotian Liu ◽  
Pengcheng Wu ◽  
Zhiying Guo

Experimental work was carried out to develop information about mechanical properties of recycled concrete (RC) in marine environment. By using the seawater and dry-wet circulation to simulate the marine environment, specimens of RC were tested with different replacement percentages of 0%, 30%, and 60% after immersing in seawater for 4, 8, 12, and 16 months, respectively. Based on the analysis of the stress-strain curves (SSCs) and compressive strength, it is revealed that RC’ peak value and elastic modulus decreased with the increase of replacement percentage and corroding time in marine environment. And the failure of recycled concrete was speeded up with more obvious cracks and larger angles of 65° to 85° in the surface when compared with normal concrete. Finally, the grey model (GM) with equal time intervals was constructed to investigate the law of compressive strength of recycled concrete in marine environment, and it is found that the GM is accurate and feasible for the prediction of RC compressive strength in marine environment.


2019 ◽  
Vol 8 (3) ◽  
pp. 2806-2808

This paper concentrates on preparing concrete in which reverse osmosis waste water is incorporated in mixing and to cure. Experimental procedure consists of 4 mix proportions of various water cement ratios. Fresh concrete is tested for workability and flowing ability. Cubes were casted and tested to find out compressive strength of concrete. Test results of potable water concrete and RO waste water concrete were compared. Results show that workability of both the concretes is almost same. When coming to the compressive strength, RO waste water concrete shows less strength at 28days compared to normal concrete.


2018 ◽  
Vol 27 (3) ◽  
pp. 348-354 ◽  
Author(s):  
Jakub Jura ◽  
Małgorzata Ulewicz

The article presents the results of research aimed at using glass waste and ash from biomass. The tests were carried out for cement mortars samples with using glass cullet, ash from biomass and using both wastes in 50/50 proportions. The physical and mechanical properties of the standard mortar and modified mortars were tested. Standard mortar and cement mortar samples were made in which 10, 20 and 30% of the cement mass was used as part of the standard sand. The samples were made of CEM I 42.5R. Mortars containing fly ash addition had an increased compressive strength and a smaller drop in compressive strength after frost resistance tests than standard mortar. The use of glass cullet in the amount of up to 20% did not reveal any changes in the mechanical properties of mortars, but using them in a larger amount resulted in unfavorable results. The use of a mixture of these two waste materials did not improve the results. The research has shown the possibility of using this waste to modify cement mortars.


2020 ◽  
Vol 15 (1) ◽  
pp. 119-136 ◽  
Author(s):  
Muhammet Gökhan Altun ◽  
Meral Oltulu

ABSTRACT The use of recycled aggregate (RA) instead of natural aggregate (NA) in concrete is necessary for environmental protection and the effective utilization of resources. The addition of recycled aggregates in concrete increases shrinkage, porosity and decreases the mechanical properties compared to that of normal concrete. This study was aimed at investigating how the addition of various proportions of polypropylene and steel fiber affect the mechanical properties of recycled aggregate concrete (RAC). The natural coarse aggregates (NCAs) used in the production of normal concrete (NC) were replaced in 30% and 50% proportions by recycled coarse aggregates (RCAs) obtained from the demolished buildings. In this case, a polypropylene fiber (PF) content of 0.1% and steel fiber (SF) 1% and 2% volume fractions were used, along with hybrid fibers-a combination of the two. While the material performance of RAC compared to NC is analyzed by reviewing existing published literature, it is not evident what the use of RCAs and hybrid fibers have on the mechanical properties of concrete. The results showed that the compressive strength, flexural strength and impcat resistance of RAC were reduced as the percentage of RCAs increased. It was observed that the compressive strength was increased with the addition of 1% steel fiber in the RAC. The flexural and impact performance of steel fiber-reinforced concrete (Specimens NC and RAC) was increased as the volume fractions of steel fiber increased. The hybrid fiber reinforced concretes showed the best results in their mechanical performance of all the concrete groups.


Sign in / Sign up

Export Citation Format

Share Document