scholarly journals Sifat Mekanis Beton Normal dengan Campuran Tepung Marmer

2018 ◽  
Vol 24 (1) ◽  
pp. 71
Author(s):  
Widodo Kushartomo ◽  
Dewi Permata Sari

This study is describe about the mechanical properties of normal concrete by adding of marble flour based on the mixed plan made. The compressive strength of the planned test object fc '20.0 and fc' 30.0 MPa was prepared by using the ACI method. The addition of marble flour in a concrete mixture varies from 0%, 5%, 10%, 15%, 20% and 25% to the weight of the cement used. Concrete test specimens were made in the form of cylinders 15.0 cm in diameter, 30.0 cm in height and made in the form of concrete beams measuring 15.0 cm x 15.0 cm x 75.0 cm, the type of mechanical testing performed in the form of compressive strength tests on cylindrical specimen, split tensile strength test on cylindrical specimen and flexure test on beam specimen. Curing is done by immersion technique at 25ºC and the test is done when the concrete is 28 days old. The test results show that the addition of marble flour to the normal concrete mixture can increase its mechanical properties by 26% for compressive strength, 24% for split tensile strength, and 17% for flexural strength. 

Author(s):  
Aman Sharma

Abstract: The wollastonite mineral are the main source of solid-state reaction from limestone and silica sand. Wollastonite is used as replacement of both sand and cement depending on size of wollastonite. Present study will provide better understanding of mechanical and durability properties of concrete in which cement is partially replaced with wollastonite. The present paper would contribute to the efforts being made in the field of concrete technology towards development of concretes possessing good strength and durability properties along with economic and ecological advantage. Based on the study, valuable advice will be given for concrete structures. It was found that with increase in amount of wollastonite, in concrete with workability of concrete decreases. It was also found that initial day’s strength is less for wollastonite concrete compare to control mix, but as the age increases they show good improvement in strength due to pozzalanic reaction. Optimum dosage is observed to be 15% WP which shows more strength compared to control mix. Keywords: wollastonite mineral, workability, compressive strength, split tensile strength.


2019 ◽  
Vol 5 (2) ◽  
pp. 102
Author(s):  
Chaeril Anwar ◽  
Erniati Bachtiar ◽  
Nur Khaerat Nur

This research aims to determine the value of mechanical properties in fiber fibers which are submerged in seawater and to find out the optimum length of fiber fibers to the mechanical properties of fiber fibers which are submerged in sea water. The method used is an experimental method carried out in the laboratory by varying the length of the fibers, which is 25 mm; 50 mm; 75 mm; and 100 mm with 4% fiber addition. Tests of mechanical properties carried out in the form of compressive strength, split tensile strength, and flexural strength. The results of the research challenge the palm fiber-concrete that the longer the fibers used in the concrete, the mechanical properties decrease. Fiber concrete submerged in seawater has higher mechanical properties than normal concrete. Optimum fiber length length in fiber concrete from the results of this study is 25 mm.


2021 ◽  
Vol 6 (1) ◽  
pp. 32
Author(s):  
Abdul Karim Hadi ◽  
Sudarman Supardi ◽  
Mukti Maruddin ◽  
A.Alal Azhari Yusuf ◽  
Rahmat Hidayat Samsuddin

Dalam dunia konstruksi pekerjaan beton memegang peranan sangat penting, baik pada bangunan struktural maupun non struktural.Dapat dilihat bahwahampir setiap bangunan yang didirikanseperti perumahan, gedung bertingkat, jembatan, jalan,  bendungan dan saluran irigasi serta bangunan lainnya selalu  memerlukan adanya pekerjaan betonterutama pada pekerjaan konstruksi beton bertulang. Selama ini pemadatan atau vibrasi dilakukan tidak sesuai dengan prosedur dan dapat menurunkan kualitas beton. Salah satu solusi mengatasi masalah tersebut yaitu dengan penggunaan self compacting concrete.Tujuan penelitian ini untuk mengetahui pengaruh penambahan superplasticizerterhadap workabilitybeton self compacting concretedan untuk mengetahui pengaruh metode self compacting concreteterhadap sifat mekanis beton. Penelitian dilakukan di laboratorium struktur dan bahan dengan penggunaan superplasticizertype sika-viscocrete 3115N sebanyak 2% dari berat semen. Pembuatan job mix designdibuat dengan metode SNI. Berdasarkan hasil penelitian superplasticizerdapat meningkatkan workabilitypada beton segar. Hasil pengujian slump cone test pada beton normal sebesar 8 cm, sedangkan hasil slump flowpada beton self compacting concretesebesar 75 cm. Pada penelitian ini didapatkan nilai kuat tekan beton normal sebesar 25,096 Mpa dan nilai kuat tekan beton SCC sebesar 30,264 Mpa dari mutu rencana 25 Mpa dan nilai kuat tarik belah beton normal sebesar 2,343 Mpa atau 9,340% dari nilai kuat tekan dan nilai kuat tarik belah beton SCC sebesar 3,358 Mpa atau 11,09%  dari nilai kuat tekan. Berdasarkan data yang didapatkan self compacting concrete memilki workabilitydan sifat mekanis yang lebih baik.   In the world of construction, concrete work plays a very important role, both in structural and non-structural buildings. It can be seen that almost every building that is erected such as housing, high rise buildings, bridges, roads, dams and irrigation canals and other buildings always requires concrete work, especially in reinforced concrete construction work. During this time compaction or vibration is done not in accordance with procedures and can reduce the quality of concrete. One solution to overcome this problem is the use of self compacting concrete. The purpose of this study was to determine the effect of adding superplasticizer to the workability of self compacting concrete and to determine the effect of the self compacting concrete method on the mechanical properties of concrete. The research was carried out in the structure and material laboratory using 2% sika-viscocrete superplasticizer as much as 2% by weight of cement. Job mix design is made using SNI method. Based on the results of research superplasticizer can increase workability in fresh concrete. The slump cone test results on normal concrete are 8 cm, while the slump flow results on self-compacting concrete are 75 cm. In this study, the compressive strength value of normal concrete was 25.096 MPa and the compressive strength value of SCC concrete was 30.264 MPa from the quality plan of 25 MPa and the value of normal concrete split tensile strength was 2.334 MPa or 9.340% of the compressive strength and SCC concrete compressive strength value. 3.358 MPa or 11.09% of the compressive strength. Based on the data obtained, self compacting concrete has better workability and mechanical properties


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1985-1989
Author(s):  
Jia Bin Wang ◽  
Di Tao Niu ◽  
Rui Ma ◽  
Ze Long Mi

In order to investigate the carbonation resistance of shotcrete and the mechanical properties after carbonation, the accelerated carbonation test was carried out. The results indicate that the carbonation resistance of shotcrete is superior to that of normal concrete. With the increasing of carbonation depth, compressive strength and splitting tensile strength of shotcrete grew rapidly. The admixing of steel fiber can further improve the carbonation resistance, reduce the carbonation rate, and increase the splitting tensile strength of shotcrete greatly. Besides, based on analyzing the effects of construction technology and steel fiber of concrete for the carbonation resistance, a carbonation depth model for shotcrete was established. Key words: shotcrete; carbonation; steel fiber; mechanical properties


2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


1994 ◽  
Vol 370 ◽  
Author(s):  
Manouchehr Hassanzadeh

AbstractThis study has determined the fracture mechanical properties of 9 types of rock, namely fine-, medium- and coarse-grained granites, gneiss, quartzite, diabase, gabbro, and fine- and coarse-grained limestones. Test results show among other things that quartzite has the highest compressive strength and fracture energy, while diabase has the highest splitting tensile strength and modulus of elasticity. Furthermore, the strength and fracture energy of the interfacial zone between the rocks and 6 different mortars have been determined. The results showed that, in this investigation, the mortar/rock interfaces are in most cases weaker than both mortars and rocks.


2018 ◽  
Author(s):  
Erniati Bachtiar

Concrete construction technology is directed to be sustainable and ecofriendly. The waste of the candlenut shell as a substitute for the coarse aggregate of concrete mixture is known that the candlenut shell has a hard texture so it may be used as a substitute for coarse aggregates in concrete. The purpose of the research was to determine the effect of Candlenut shell as a substitute of coarse aggregate on physical properties (slump test, bleeding, segregation, volume weight) and mechanical properties (compressive strength and tensile strength) of concrete using Candlenut shell as replacement material of the coarse aggregate. The variation of the research was percentage of the Candlenut shell in the concrete mixture, that was 0%, 25%, 50%, 75% and 100% to the coarse aggregate volume in the concrete mixture. Number of specimens in reseach was each 5 pieces each variation. Testing of mechanical properties of concrete (compressive strength and tensile strength) was performed at 28 days. Testing of the concrete for compressive strength test and tensile strength on age 28 days. Concrete using candlenut shell as a substitute of coarse aggregates has decreased compressive strength respectively 11.72 MPa (37.71%) for 25% candlenut shell; 15.54 MPa (50.00%) for 50% candlenut shell; 18.35 MPa (59.02%) for 75% candlenut shell; And 18,85 MPa (60,66%) for 100% candlenut shell from of the 0% candlenut shell with compressive strength of 31.08 Mpa. Concrete using for 25% candlenut shell as a substitute for coarse aggregates decreased tensile strength respectively of 0.95 MPa (28.70%) for 25% candlenut shell; 1.21 MPa (36.56%) for 50% candlenut shell; 1.27 MPa (38.37%) for 75% candlenut shell; And 1.40 MPa (42.30%) for 100% candlenut shell from of the 0% candlenut shell with the tensile strength of BN of 3.31 MPa. The decrease in the value of compressive strength and tensile strength is strongly influenced by the increasing percentage of Candlenut shells on concrete


Sign in / Sign up

Export Citation Format

Share Document