scholarly journals Prognostic Effect of Long Noncoding RNA NEAT1 Expression Depends on p53 Mutation Status in Cancer

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Masashi Idogawa ◽  
Hiroshi Nakase ◽  
Yasushi Sasaki ◽  
Takashi Tokino

Recently, many studies have revealed that long noncoding RNAs (lncRNAs) play important roles in various biological and pathological processes. Our previous study reported that lncRNA NEAT1 is a direct transcriptional target of p53. NEAT1 is an essential component of paraspeckles, which have recently been identified as a novel type of nuclear compartment. Although our previous findings indicate that NEAT1 induction contributes to the tumor-suppressor function of p53, the role of NEAT1 in cancer is still controversial. In this study, we comprehensively analyzed the relationship between NEAT1 expression and p53 mutation status. Interestingly, survival analysis based on NEAT1 expression in several cancer tissues revealed that the p53 wild-type group with high NEAT1 expression had a good prognosis, while poor prognosis or no correlation between NEAT1 expression and survival was observed in the p53-mutated group. These results demonstrate that the tumor-suppressive effect of NEAT1 depends on p53 function and is consistent with our previous report showing that NEAT1 supports the tumor-suppressive function of p53. Specifically, NEAT1 seems to play a tumor-suppressive role only in the presence of wild-type p53. These results provide important clues to the roles of NEAT1 in cancer.

2019 ◽  
Vol 2019 ◽  
pp. 1-1
Author(s):  
Masashi Idogawa ◽  
Hiroshi Nakase ◽  
Yasushi Sasaki ◽  
Takashi Tokino

Author(s):  
Omer Gokay Argadal ◽  
Melis Mutlu ◽  
Secil Ak Aksoy ◽  
Hasan Kocaeli ◽  
Berrin Tunca ◽  
...  

Primary glioblastoma (GB) is the most aggressive type of brain tumors. While mutations in isocitrate dehydrogenase (IDH) genes are frequent in secondary GBs and correlate with a better prognosis, most primary GBs are IDH wild-type. Recent studies have shown that the long noncoding RNA metastasis associated lung adenocarcinoma transcript-1 (MALAT1) is associated with aggressive tumor phenotypes in different cancers. Our aim was to clarify the prognostic significance of MALAT1 in IDH1/2 wild-type primary GB tumors. We analyzed IDH1/2 mutation status in 75 patients with primary GB by DNA sequencing. The expression of MALAT1 was detected in the 75 primary GB tissues and 5 normal brain tissues using reverse transcription quantitative PCR (RT-qPCR). The associations between MALAT1 expression, IDH1/2 mutation status, and clinicopathological variables of patients were determined. IDH1 (R132H) mutation was observed in 5/75 primary GBs. IDH2 (R172H) mutation was not detected in any of our cases. MALAT1 expression was significantly upregulated in primary GB vs. normal brain tissues (p = 0.025). Increased MALAT1 expression in IDH1/2 wild-type primary GBs correlated with patient age and tumor localization (p = 0.032 and p = 0.025, respectively). A multivariate analysis showed that high MALAT1 expression was an unfavorable prognostic factor for overall survival (p = 0.034) in IDH1/2 wild-type primary GBs. High MALAT1 expression may have a prognostic role in primary GBs independent of IDH mutations.


2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Zhenzhao Luo ◽  
Yue Fan ◽  
Xianchang Liu ◽  
Shuiyi Liu ◽  
Xiaoyu Kong ◽  
...  

Background: Previous studies reported that N-myc downstream-regulated gene 1 (NDRG1) was upregulated in various cancer tissues and decreased expression of miR-188-3p and miR-133b could suppress cell proliferation, metastasis, and invasion and induce apoptosis of cancer cells. However, the molecular mechanism of NRDG1 involved in hepatocellular carcinoma (HCC) tumorigenesis is still unknown. Methods: The expressions of miR-188-3p, miR-133b, and NRDG1 in HCC tissues and cells were quantified by qRT-PCR and Western blot. MTT assay and transwell invasion assay were performed to evaluate cell growth and cell migration, respectively. Luciferase reporter assay were performed to determine whether miR-188-3p and miR-133b could directly bind to NRDG1 in HCC cells. Results: The results showed that NRDG1 was upregulated and these 2 microRNAs were downregulated in HCC tissues. NRDG1 was negatively correlated with miR-188-3p and miR-133b in HCC tissues. MiR-188-3p and miR-133b were demonstrated to directly bind to 3′UTR of NRDG1 and inhibit its expression. Upregulation of miR-188-3p and miR-133b reduced NRDG1 expression in hepatocellular carcinoma cell lines, which consequently inhibited cell growth and cell migration. Conclusions: Our finding suggested that miR-188-3p and miR-133b exert a suppressive effect on hepatocellular carcinoma proliferation, invasion, and migration through downregulation of NDRG1.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii32-iii32
Author(s):  
H Noor ◽  
R Rapkins ◽  
K McDonald

Abstract BACKGROUND Tumour Protein 53 (TP53) is a tumour suppressor gene that is mutated in at least 50% of human malignancies. The prevalence of TP53 mutation is much higher in astrocytomas with reports of up to 75% TP53 mutant cases. Rare cases of TP53 mutation also exist in oligodendroglial tumours (10–13%). P53 pathway is therefore an important factor in low-grade glioma tumorigenesis. Although the prognostic impact of TP53 mutations has been studied previously, no concrete concordance were reached between the studies. In this study, we investigated the prognostic effects of TP53 mutation in astrocytoma and oligodendroglioma. MATERIAL AND METHODS A cohort of 65 matched primary and recurrent fresh frozen tumours were sequenced to identify hotspot exons of TP53 mutation. Exons 1 to 10 were sequenced and pathogenic mutations were mostly predominant between Exons 4 and 8. The cohort was further expanded with 78 low grade glioma fresh frozen tissues and hotspot exons were sequenced. Selecting only the primary tumour from 65 matched tumours, a total of 50 Astrocytoma cases and 51 oligodendroglioma cases were analysed for prognostic effects of TP53. Only pathogenic TP53 mutations confirmed through COSMIC and NCBI databases were included in the over survival and progression-free survival analysis. RESULTS 62% (31/50) of astrocytomas and 16% (8/51) of oligodendrogliomas harboured pathogenic TP53 mutations. Pathogenic hotspot mutations in codon 273 (c.817 C>T and c.818 G>A) was prevalent in astrocytoma with 58% (18/31) of tumours with these mutations. TP53 mutation status was maintained between primary and recurrent tumours in 93% of cases. In astrocytoma, overall survival of TP53 mutant patients was longer compared to TP53 wild-type patients (p<0.01) but was not significant after adjusting for age, gender, grade and IDH1 mutation status. In contrast, astrocytoma patients with specific TP53 mutation in codon 273 showed significantly better survival compared to other TP53 mutant and TP53 wild-type patients combined (p<0.01) in our multivariate analysis. Time to first recurrence (progression-free survival) of TP53 mutant patients was significantly longer than TP53 wild-type patients (p<0.01) after adjustments were made, while TP53 mutation in codon 273 was not prognostic for progression-free survival. In oligodendroglioma patients, TP53 mutations did not significantly affect overall survival and progression-free survival. CONCLUSION In agreement with others, TP53 mutation is more prevalent in Astrocytoma and mutations in codon 273 are significantly associated with longer survival.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3494-3503 ◽  
Author(s):  
Steven Knapper ◽  
Kenneth I. Mills ◽  
Amanda F. Gilkes ◽  
Steve J. Austin ◽  
Val Walsh ◽  
...  

Abstract The receptor tyrosine kinase FLT3 is a promising molecular therapeutic target in acute myeloid leukemia (AML). Activating mutations of FLT3 are present in approximately one-third of patients, while many nonmutants show evidence of FLT3 activation, which appears to play a significant role in leukemogenesis. We studied the effects of lestaurtinib (CEP701) and PKC412, 2 small molecule inhibitors of FLT3, on 65 diagnostic AML blast samples. Both agents induced concentration-dependent cytotoxicity in most cases, although responses to PKC412 required higher drug concentrations. Cytotoxic responses were highly heterogeneous and were only weakly associated with FLT3 mutation status and FLT3 expression. Importantly, lestaurtinib induced cytotoxicity in a synergistic fashion with cytarabine, particularly in FLT3 mutant samples. Both lestaurtinib and PKC412 caused inhibition of FLT3 phosphorylation in all samples. Translation of FLT3 inhibition into cytotoxicity was influenced by the degree of residual FLT3 phosphorylation remaining and correlated with deactivation of STAT5 and MAP kinase. FLT3 mutant and wild-type cases both varied considerably in their dependence on FLT3 signaling for survival. These findings support the continued clinical assessment of FLT3 inhibitors in combination with cytotoxic chemotherapy: Entry to future clinical trials should include FLT3 wild-type patients and should remain unrestricted by FLT3 expression level.


Blood ◽  
2012 ◽  
Vol 119 (24) ◽  
pp. 5824-5831 ◽  
Author(s):  
Ana Flávia Tibúrcio Ribeiro ◽  
Marta Pratcorona ◽  
Claudia Erpelinck-Verschueren ◽  
Veronika Rockova ◽  
Mathijs Sanders ◽  
...  

Abstract The prevalence, the prognostic effect, and interaction with other molecular markers of DNMT3A mutations was studied in 415 patients with acute myeloid leukemia (AML) younger than 60 years. We show mutations in DNMT3A in 96 of 415 patients with newly diagnosed AML (23.1%). Univariate Cox regression analysis showed that patients with DNMT3Amutant AML show significantly worse overall survival (OS; P = .022; hazard ratio [HR], 1.38; 95% confidence interval [CI], 1.04-1.81), and relapse-free survival (RFS; P = .005; HR, 1.52; 95% CI, 1.13-2.05) than DNMT3Awild-type AMLs. In a multivariable analysis, DNMT3A mutations express independent unfavorable prognostic value for OS (P = .003; HR, 1.82; 95% CI, 1.2-2.7) and RFS (P < .001; HR, 2.2; 95% CI, 1.4-3.3). In a composite genotypic subset of cytogenetic intermediate-risk AML without FLT3-ITD and NPM1 mutations, this association is particularly evident (OS: P = .013; HR, 2.09; 95% CI, 1.16-3.77; RFS: P = .001; HR, 2.65; 95% CI, 1.48-4.89). The effect of DNMT3A mutations in human AML remains elusive, because DNMT3Amutant AMLs did not express a methylation or gene expression signature that discriminates them from patients with DNMT3Awild-type AML. We conclude that DNMT3A mutation status is an important factor to consider for risk stratification of patients with AML.


Sign in / Sign up

Export Citation Format

Share Document