scholarly journals Highly Crystalline WO3 Nanoparticles Are Nontoxic to Stem Cells and Cancer Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
B. Han ◽  
A. L. Popov ◽  
T. O. Shekunova ◽  
D. A. Kozlov ◽  
O. S. Ivanova ◽  
...  

Tungsten oxide sol, containing highly crystalline nanoparticles of orthorhombic WO3 and having good sedimentation stability, was synthesized using a facile, ultrasonic-assisted technique. An additional steric stabilizer, dextran, was proposed to enhance the stability of WO3 nanoparticles in biological media and to reduce their in vivo toxicity. The cytotoxicity of dextran-stabilized and nonstabilized WO3 sols was studied in vitro using dental pulp stem (DPS) cell lines and breast cancer (MCF-7) cell lines. Both tungsten oxide sols demonstrated low cytotoxicity and low genotoxicity for both stem cells and malignant cells and only slightly reduced their metabolic activity in the concentration range studied (from 0.2 to 200 μg/ml). The data obtained support possible theranostic applications of tungsten oxide colloidal solutions.

2010 ◽  
Vol 88 (3) ◽  
pp. 479-490 ◽  
Author(s):  
Guoliang Meng ◽  
Shiying Liu ◽  
Xiangyun Li ◽  
Roman Krawetz ◽  
Derrick E. Rancourt

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are available in the word, only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here, we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage, and used to isolate ICM via microsurgery. Unlike previous microsurgery methods, which use specialized glass or steel needles, our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated, cut into several cell clumps, and transferred onto fresh feeders. After more than 30 passages, the two hESC lines established using this method exhibited normal morphology, karyotype, and growth rate. Moreover, they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions, including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.


Reproduction ◽  
2001 ◽  
pp. 729-733 ◽  
Author(s):  
T Amano ◽  
Y Kato ◽  
Y Tsunoda

The developmental potential of enucleated mouse oocytes receiving embryonic stem cells from ten lines with either the same or different genetic backgrounds using the cell fusion method was examined in vitro and in vivo. The development of nuclear-transferred oocytes into blastocysts was high (34-88%). However, there was no clear correlation between development into blastocysts after nuclear transfer and the chimaera formation rate of embryonic stem cells. The development into live young was low (1-3%) in all cell lines and 14 of 19 young died shortly after birth. Most of the live young had morphological abnormalities. Of the five remaining mice, two died at days 23 and 30 after birth, but the other three mice are still active at days 359 (mouse 1) and 338 (mice 4 and 5) after birth, with normal fertility. However, the reasons for the abnormalities and postnatal death of embryonic stem cell-derived mice are unknown.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 707-707
Author(s):  
Jung-Hyun Kim ◽  
Liping Li ◽  
Zixin Zhang ◽  
Katharina Hayer ◽  
Lingling Xian ◽  
...  

Abstract Introduction: Despite advances in therapy for B-cell acute lymphoblastic leukemia (B-ALL), relapsed disease remains the leading cause of death in children with cancer. The gene encoding the High Mobility Group A1 (HMGA1) chromatin regulator is highly expressed in stem cells and diverse malignancies where high levels portend poor outcomes. We discovered that transgenic mice misexpressing Hmga1 in lymphoid cells develop leukemic transformation by amplifying transcriptional networks involved in stem cell function, proliferation, and inflammation (Hillion et al, Cancer Res 2008, Schuldenfrei et al, BMC Genomics 2011, Xian et al, Nature Commun 2017). In pediatric B-ALL (pB-ALL), HMGA1 is overexpressed with highest levels in blasts from early relapse (Roy et al, Leuk Lymphoma 2013). Together, these findings suggest that HMGA1 is required for leukemogenesis and drives relapse through epigenetic reprogramming. We therefore sought to: 1) test the hypothesis that HMGA1 is required for leukemogenesis and relapse in pB-ALL, and, 2) elucidate targetable mechanisms mediated by HMGA1. Methods: To elucidate the function of HMGA1 and downstream targets, we employed CRISPR/Cas9 gene inactivation and lentiviral-mediated gene silencing via delivery of short hairpin RNA (shRNA) targeting 2 sequences per gene in cell lines from relapsed pB-ALL, including REH, which harbor the TEL-AML1 fusion, and 697, which harbor the E2A-PBX1 fusion. We assessed leukemia phenotypes in vitro and leukemic engraftment in vivo. To dissect molecular mechanisms, we performed RNA sequencing (RNAseq) and applied in silico pathway analysis. To validate these pathways in human pB-ALL, we assessed gene expression and clinical outcomes in independent cohorts. The Broad Institute Connectivity Map (CMAP) was applied to identify drugs to target HMGA1 networks. Results: HMGA1 is overexpressed in pB-ALL in independent cohorts with highest levels at relapse. Decreasing HMGA1 expression via CRISPR/Cas9 inactivation or shRNA-mediated gene silencing in relapsed pB-ALL cell lines (REH, 697) disrupts proliferation, decreases the frequency of cells in S phase concurrent with increases in G0/G1, enhances apoptosis, and impairs clonogenicity. To assess HMGA1 function in vivo, we compared leukemogenesis following tail vein injection of pB-ALL cell lines with or without HMGA1 depletion in immunodeficient mice (NOD/SCID/IL2 receptor gamma null). Survival was prolonged in mice injected with either pB-ALL cell line (REH, 697) after HMGA1 depletion. Further, leukemic cells that ultimately engraft show increased HMGA1 expression relative to the pool of injected cells with HMGA1 silencing, suggesting that escape from HMGA1 silencing was required for engraftment. RNAseq revealed transcriptional networks governed by HMGA1 that regulate proliferation (G2M checkpoint, E2F), RAS/ERK signaling, hematopoietic stem cells, and ETV5 (ETS variant 5 transcription factor) targets. Given its association with aggressive ALL harboring the BCR-ABL fusion, we focused on the ETV5 gene. CRISPR/Cas9 inactivation or gene silencing of ETV5 in relapsed pB-ALL cell lines (REH, 697) decreases proliferation and clonogenicity in vitro, while delaying leukemogenesis in vivo. Further, restoring ETV5 expression in pB-ALL cell lines with HMGA1 silencing partially rescues anti-leukemogenic effects of HMGA1 depletion. Mechanistically, HMGA1 binds to AT-rich regions within the ETV5 promoter (-0.7 kb and -0.2 kb) and recruits active histone marks (H3K27Ac, H3K4me3, H3K4me1) to induce ETV5. Epigenetic drugs predicted to target HMGA1-ETV5 networks synergize with HMGA1 silencing in cytotoxicity assays with pB-ALL cell lines. Most importantly, HMGA1 and ETV5 are co-expressed and up-regulated in primary blasts from children with pB-ALL with highest levels at relapse, thus underscoring the significance of this pathway in relapsed pediatric B-ALL. Conclusions: We discovered a previously unknown epigenetic program whereby HMGA1 up-regulates ETV5 networks by binding to chromatin and recruiting active histone marks to the ETV5 promoter. Both HMGA1 and ETV5 are up-regulated at relapse. Finally, the HMGA1-ETV5 axis can be targeted by epigenetic drugs (HDAC inhibitors) that synergize with HMGA1 depletion. Our findings reveal the HMGA1-ETV5 axis as a key molecular switch in relapsed pB-ALL and rational therapeutic target to treat or prevent relapse. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wanshun Liu ◽  
Binyu Wang ◽  
Ao Duan ◽  
Kai Shen ◽  
Qi Zhang ◽  
...  

Abstract Background Osteosarcoma (OS) is a malignant tumor originating from mesenchymal stem cells, and has an extremely high fatality rate and ability to metastasize. Although mounting evidence suggests that miR-769-5p is strongly associated with the malignant progression and poor prognosis of various tumors, the exact role of miR-769-5p in OS is still unclear. Therefore, this study aimed to explore the relationship between miR-769-5p and the malignant progression of OS, and its underlying mechanism of action. Methods miR-769-5p expression was analyzed in GSE28423 from the GEO database and measured in OS clinical specimens and cell lines. The effects of miR-769-5p on OS proliferation, migration and invasion were measured both in vivo and in vitro. In addition, bioinformatics analyses and luciferase reporter assays were used to explore the target genes of miR-769-5p. Rescue experiments were also conducted. Moreover, a co-culture model was used to test the cell interaction between bone mesenchymal stem cells (BMSC) and OS cells. Results We found that miR-769-5p is highly expressed in OS clinical specimens and cell lines. In vivo and in vitro experiments also showed that miR-769-5p significantly promoted the proliferation, migration and invasion of OS cells. Dual-specific phosphatase 16 (DUSP16) was negatively associated with miR-769-5p expression in OS cells and tissue samples and was validated as the downstream target by luciferase reporter assay and western blotting. Rescue experiments showed that DUSP16 reverses the effect of miR-769-5p on OS cells by negatively regulating the JNK/p38 MAPK signaling pathway. Additionally, the results of the co-culture of BMSCs and OS cells confirmed that miR-769-5p was transferred from BMSCs to OS cells through exosomes. Conclusions In summary, this study demonstrates for the first time that BMSC-derived exosomal miR-769-5p promotes OS proliferation and metastasis by targeting DUSP16 and activating the JNK/p38 MAPK signaling pathway, which could provide rationale for a new therapeutic strategy for OS.


2018 ◽  
Vol 47 (5) ◽  
pp. 2147-2158 ◽  
Author(s):  
Feiyu Chen ◽  
Na Luo ◽  
Yu Hu ◽  
Xin Li ◽  
Kejing  Zhang

Background/Aims: Triple negative breast cancer (TNBC) is resistant to conventional chemotherapy due to high proportions of cancer stem cells (CSCs). The aim of this study is to unravel the miR-137-mediated regulatory mechanism of B-cell lymphoma/leukemia 11A (BCL11A) in TNBC. Methods: A corhort of 34 TNBC tumor tissues and paired adjacent normal tissues, as well as 25 non-TNBC tumor tissues and paired adjacent normal tissues were collected post-operatively from patients with breast cancer. Q-PCR was performed to determine the mRNA levels of miR-137 and BCL11A in breast tissues and cell lines. Bioinformatics analysis and dual luciferase reporter assay were used to verify the direct interaction between miR-137 and BCL11A. After up-/down-regulation of BCL11A, miR-137, or DNMT1 via lentiviral transduction in TNBC cell lines SUM149 and MDA-MB-231 cells, Q-PCR and Western blot assays were used to detect the expression levels of BCL11A, DNA methyltransferases 1 (DNMT1), and Islet-1 (ISL1). Mammosphere assay was conducted to assess tumorosphere formation ability of cells, coupled with flow cytometry to determine the percentage of breast cancer stem cells. Co-immunoprecipitation assay was used to determine the interaction between BCL11A and DNMT1. Xenograft tumorigenesis assay was performed to monitor tumor formation in vivo. Results: BCL11A was highly expressed in TNBC, whereas miR-137 was significantly lower in both TNBC tissues and cell lines. miR-137 suppressed BCL11A expression at both mRNA and protein levels by directly targeting its 3’UTR. In both SUM149 and MDA-MB-231 cells, overexpression of miR-137 or knockdown of BCL11A reduced the number of tumoroshperes and the percentage of cancer stem cells in vitro, and inhibited tumor development in vivo. Furthermore, BCL11A interacted with DNMT1 in TNBC cells. Silencing of either BCL11A or DNMT1 impaired cancer stemness and tumorigenesis of TNBC via suppressing ISL1 expression both in vitro, and in vivo. Conclusions: By perturbing BCL11A-DNMT1 interaction, miR-137 impairs cancer stemness and suppresses tumor development in TNBC.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5131-5131
Author(s):  
Junaid Ansari ◽  
Paula Polk ◽  
Jeffrey Aufman ◽  
Guillermo A Herrera ◽  
James Cardelli ◽  
...  

Abstract Background and Purpose: Niclosamide is an anthelminthic drug which has been used for the treatment of human parasitic infections for many years. Niclosamide interacts with lysosomes and induces autophagy. In recent years, it has demonstrated anti-cancer potential in leukemia, breast cancer, colon cancer, myeloma, ovarian, prostate and lung cancer models. Multiple pathways like Wnt/β-catenin, mTORC1, STAT3, NF-κB and notch signaling were reported to be involved. Only limited studies were done in lymphoma models. We hypothesized that niclosamide may also have in vitro and in vivo activities in lymphomas. Non-Hodgkin lymphomas generally respond well to chemotherapy and/ or immunotherapy, however many patients relapse and ultimately become refractory. Relapses are often caused by tumor stem cells not eliminated by cytostatic drugs. Therefore new treatment approaches and new targets are desirable. Materials and Methods: Established B lymphoma cell lines were exposed to different concentrations of niclosamide (0.1-4µM) and IC50 was calculated at 24, 48 and 72 hours. The cell concentration, viability and proliferation were assessed by CellTiter-Blue viability and trypan blue exclusion assays. Apoptosis was assessed by a combined annexin-V/ propidium iodide stain. Gene expression changes were studied using GeneChip Human Transcriptome Array 2.0 (Affymetrix) with 44 699 annotated genes. Colony forming assays were performed in methylcellulose. Ultrastructural changes were studied using a Hitachi electron microscope. As normal controls, peripheral blood mononuclear cells from individuals without active cancer were incubated with niclosamide for up to 72 hours. Samples from patients with chronic lymphocytic leukemia were also treated under the same conditions. Results: Treatment with niclosamide at doses as low as 0.1 μM resulted in time-and dose- dependent apoptosis, cytotoxicity and inhibition of proliferation in aggressive lymphoma cell lines. The 50% inhibitory concentration in a proliferation assay (mean of data at 24, 48 and 72 hours) is shown in the Table below. Niclosamide also inhibited clonal growth in semi-solid media. Electron microscopy showed that filopodia increased and lipid vacuoles developed whereas mitochondria were less numerous and had fewer cristae (when KOPN-8 was treated with 0.5 μM for 48 hours). The viability of mononuclear cells from 8 individuals without lymphoma was unchanged (or minimally decreased) when incubated with niclosamide. As far as cells from two patients with untreated chronic lymphocytic leukemia are concerned, no cytotoxicity was observed at doses between 0.5 and 5 μM. Gene expression changes were studied the cell lines Daudi and KOPN-8 treated with 2.5 μM for 3 and 6 h. 96 genes were consistently overexpressed , 59 down-regulated. Ten out of the 96 overexpressed genes involved the TNF pathway and immunoregulation including CD95. Thirteen out of the 59 down-regulated genes are involved in mitochondrial function. Table.Cell lineDescription of Cell TypeIC 50STDDaudiBurkitt lymphoma cell line0.37 μM± 0.12HBL-2Diffuse large B cell lymphoma cell line0.68 μM± 0.15KOPN-8B precursor ALL cell line0.6 μM± 0.08RamosBurkitt lymphoma cell line0.58 μM± 0.04RajiBurkitt lymphoma cell line0.65 μM± 0.10SU-DHL4-VRVincristine resistant lymphoma cell line0.5 μM± 0.02 Conclusion: Niclosamide effectively inhibits the proliferation of B lymphoma cell lines and induces apoptosis. Preliminary data show that Niclosamide targets genes involved in the TNF pathway and interferes with mitochondrial function. Normal lymphocytes are not sensitive to niclosamide. The in-vitro activity of niclosamide is at least comparable or superior to the activity seen in other malignancies. Niclosamide may target drug-resistant lymphoma stem cells and has clinical potential. We plan to study combination treatments and perform in vivo studies. Acknowledgments: The authors thank Drs. Borje Andersson, Shile Huang, Nakle Saba, Ben Valdez and Ellen Vitetta for their kind gift of cell lines. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 70 (7) ◽  
pp. 540-546 ◽  
Author(s):  
Guilherme Lepski

Cell therapies, based on transplantation of immature cells, are being considered as a promising tool in the treatment of neurological disorders. Many efforts are being concentrated on the development of safe and effective stem cell lines. Nevertheless, the neurogenic potential of some cell lines, i.e., the ability to generate mature neurons either in vitro or in vivo, is largely unknown. Recent evidence indicate that this potential might be distinct among different cell lines, therefore limiting their broad use as replacement cells in the central nervous system. Here, we have reviewed the latest advancements regarding the electrophysiological maturation of stem cells, focusing our attention on fetal-derived-, embryonic-, and induced pluripotent stem cells. In summary, a large body of evidence supports the biological safety, high neurogenic potential, and in some diseases probable clinical efficiency related to fetal-derived cells. By contrast, reliable data regarding embryonic and induced pluripotent stem cells are still missing.


2020 ◽  
Author(s):  
Hisham F. Bahmad ◽  
Reda M. Chalhoub ◽  
Hayat Harati ◽  
Jolie Bou-Gharios ◽  
Farah Ballout ◽  
...  

AbstractNeuroblastoma is an embryonic tumor that represents the most common extracranial solid tumor in children. Resistance to therapy is attributed, in part, to the persistence of a subpopulation of slowly dividing cancer stem cells (CSCs) within those tumors. Glycogen synthase kinase (GSK)-3β is an active proline-directed serine/threonine kinase, well-known to be involved in different signaling pathways entangled in the pathophysiology of neuroblastoma. This study aims to assess the potency of an irreversible GSK-3β inhibitor drug, Tideglusib (TDG), in suppressing proliferation, viability, and migration of human neuroblastoma cell lines, as well as its effects on their CSCs subpopulation in vitro and in vivo. Our results showed that treatment with TDG significantly reduced cell proliferation, viability, and migration of SK-N-SH and SH-SY5Y cells. TDG also significantly inhibited neurospheres formation capability in both cell lines, eradicating the self-renewal ability of highly resistant CSCs. Importantly, TDG potently inhibited neuroblastoma tumor growth and progression in vivo. In conclusion, TDG proved to be an effective in vitro and in vivo treatment for neuroblastoma cell lines and may hence serve as a potential adjuvant therapeutic agent for this aggressive nervous system tumor.


2007 ◽  
Vol 19 (1) ◽  
pp. 231
Author(s):  
T. Teramura ◽  
N. Kawata ◽  
T. Takehara ◽  
N. Fujinami ◽  
M. Takenoshita ◽  
...  

Embryonic stem cells (ESCs) of nonhuman primates are important for research into human gametogenesis, because of similarities between the embryos and fetuses of nonhuman primates and those of humans. Recently, the formation of germ cells from mouse ESCs in vitro has been reported. In this study, we established cynomolgus monkey ES (cyES) cell lines and attempted to induce their differentiation into germ cells in order to obtain further information on the development of primate germ cells by observing the transcripts of some markers reported as specific for germ cells. CyES cell lines were established using blastocysts produced by intracytoplasmic sperm injection (ICSI). For inducing superovulation, females were treated with 25 IU kg-1 pregnant mare serum gonadotropin once a day for 9 days, followed by 400 IU kg-1 hCG. Oocytes were collected at 40 h after injection of hCG. After sperm injection, embryos were cultured in mCMRL medium to the blastocyst stage. For cyES cell establishment, inner cell masses (ICMs) were isolated by immunosurgery. The ESC colonies developed at about 10 days after ICM plating, and 3 cell lines were successfully established (3/11; 27.3%). All cell lines expressed Oct3/4, SSEA-4, and ALP activity. These ESCs formed teratomas containing 3 different embryonic layers when injected into SCID mice. And the cells could be passaged over 50 times without losing their original properties. To observe in vitro gametogenesis, we attempted to induce differentiation by non-adherent conditions. When cyES cells differentiated spontaneously, the aggregated structures (i.e. embryoid bodies; EBs) accumulated vasa, the expression of which is restricted to germ cells, and some meiotic markers such as dmc1 and sycp1 that exist only in synaptonemal complexes in meiosis. The existence of these markers was also confirmed by immunocytochemistry on cryosections. Interestingly, these products expressed oct4 and nanog again at Day 16, though the expression of both genes diminished at once with onset of differentiation. In vivo, it is reported that vasa, oct4, and nanog are expressed in migrating PGCs, posibly throughout the development of germ cells into spermatocytes/oocytes. Given the results obtained with the meiotic markers, it is possible that developing germ cells such as PGCs or gonocytes could be formed in cynomolgus EBs as in previous cases with mouse or human EBs. These results demonstrate that cyES cells might contribute to putative germ cells in vitro by differentiating into EBs and could be used as a model for studying mechanisms of germ cell development. This study was supported by a Grant-in-Aid for the 21st Century COE Program of the Japan Mext and by a grant for the Wakayama Prefecture Collaboration of Regional Entities for the Advancement of Technology Excellence of the JST.


Sign in / Sign up

Export Citation Format

Share Document