scholarly journals Corrigendum to “Formulation Optimization and Evaluation of Probiotic Lactobacillus sporogenes-Loaded Sodium Alginate with Carboxymethyl Cellulose Mucoadhesive Beads Using Design Expert Software”

2019 ◽  
Vol 2019 ◽  
pp. 1-1 ◽  
Author(s):  
Himanshu K. Solanki ◽  
Dushyant A. Shah
2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Himanshu K. Solanki ◽  
Dushyant A. Shah

The present study deals with the formulation optimization of sodium carboxymethyl cellulose-alginate mucoadhesive beads containing probiotic Lactobacillus sporogenes through ionotropic gelation using 32 factorial design. The effect of sodium carboxymethyl cellulose-alginate concentration on the probiotic entrapment efficiency (PEE, %), viability in simulated gastric fluid (log CFU/g), and mucoadhesion over 8 hr (%) was optimized. The optimized beads containing probiotic Lactobacillus sporogenes showed entrapment efficiency of 93.7±1.97%, viability of probiotic in simulated gastric fluid (log CFU/g) of 9.34, mucoadhesion of 71.75±1.38%, and mean diameter of 1.21±0.11 mm. The beads were also characterized by SEM, FTIR, and XRD. The swelling and degradation of these beads were influenced by pH of the test medium. Finally, stability tests performed at room temperature (25~28°C) highlighted a bacterial viability of about 91% and 86% after 1 and 2 months, respectively. The advantageous properties of probiotic Lactobacillus sporogenes-loaded mucoadhesive beads make them suitable for incorporation in functional food and/or pharmaceutical products.


Author(s):  
Bianca Boros ◽  
Nathalie Grau ◽  
Adriana Isvoran ◽  
Adina Datcu ◽  
Nicoleta Ianovici ◽  
...  

Sodium alginate (ALG) and sodium carboxymethyl cellulose (CMC) are two polysaccharides that have a wide range of applications which could lead to accidental pollution of the environment, making the assessment of their potential ecotoxicity imperative. The present study assesses the ALG and CMC effects on the growth response of the common duckweed (Lemna minor L.). The results emphasize that both polysaccharides can be classified as practically nontoxic based on their EC50 values, with ALG having a relatively higher toxicity compared to CMC. It was also observed that high doses of 1, 5 and 10 mg mL-1 of the two polysaccharides produced growth inhibitory effects against common duckweed. The toxicity of biopolymers against common duckweed, measured as EC50 values, seems to be correlated to the hydrophobicity of the monomers building the polymer. The EC50 values increase linearly with the increase of water solubility (log S) values and decrease linearly with the lipophilicity (log P) values.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2629
Author(s):  
Yufeng Chen ◽  
Jingchong Peng ◽  
Yueqi Wang ◽  
Daniel Wadhawan ◽  
Lijun Wu ◽  
...  

In this study, two polysaccharides [sodium alginate (ALG) and sodium carboxymethyl cellulose (CMC)] were selected to establish zein/sophorolipid/ALG (ALG/S/Z) and zein/sophorolipid/ALG (CMC/S/Z) nanoparticles to encapsulate 7,8-dihydroxyflavone (7,8-DHF), respectively. The results showed that polysaccharide types significantly affected performance of ternary nanoparticles, including CMC/S/Z possessed lower polydispersity index, particle size and turbidity, but higher zeta potential, encapsulation efficiency and loading capacity compared to ALG/S/Z. Compared to zein/sophorolipid nanoparticles (S/Z), both ALG/S/Z and CMC/S/Z had better stability against low pH (pH 3~4) and high ionic strengths (150~200 mM NaCl). Hydrophobic effects, electrostatic interactions and hydrogen bonding were confirmed in ternary nanoparticles fabrication via Fourier-transform infrared spectroscopy. Circular dichroism revealed that CMC and ALG had no evident impact on secondary structure of zein in S/Z, but changed surface morphology of S/Z as observed by scanning electron microscope. Encapsulated 7,8-DHF exhibited an amorphous state in ternary nanoparticles as detected by X-ray diffraction and differential scanning calorimetry. Furthermore, compared to S/Z, ALG/S/Z, and CMC/S/Z remarkably improved the storage stability and bioaccessibility of 7,8-DHF. CMC/S/Z possessed a greater storage stability for 7,8-DHF, however, ALG/S/Z exhibited a better in vitro bioaccessibility of 7,8-DHF. This research provides a theoretical reference for zein-based delivery system application.


2019 ◽  
Vol 131 ◽  
pp. 01114
Author(s):  
Dan-min Fan ◽  
Zhi-long Yang

The main raw materials of rose milk beverage are Yunnan red roses and milk. By analyzing the proportions of rose juice to milk, sucrose, citric acid and sodium alginate, and by taking flavor, taste, color and tissue state as the evaluation parameters, we conducted single-factor experiments and orthogonal experiments, and identified the optimum formula of rose milk beverage: 8% rose juice, 6% milk, 10% sucrose, 0.1% citric acid, and 0.15% compound stabilizer (sodium carboxymethyl cellulose, sodium alginate in the proportion of 1:1). Unique flavor of rose milk beverage with rich nutrition can be prepared by using the optimum formula we obtained.


2021 ◽  
Vol 10 (2) ◽  
pp. 20-26
Author(s):  
Yaduwanshi Payal ◽  
Goswami Anindya ◽  
Malviya Neelesh

The study deals with formulation optimization and evaluation of tinidazole gel by using sodium alginate as gelling agent calcium chloride, sodium citrate were used as cross linking agent. The polymeric solution of drug is in solution form before it administered to the body. But after administration when it comes in contact with acidic pH it’s converted into gel form and the drug tinidazole released from the dosage form constantly and slowly. The formulation is effective for the treatment of gastric ulcer because of Helicobacter pylori. 32 full factorial design were used for the optimization of the formulation 12 trial batches were prepared and 9 factorial design batches in which 2 factor 3 level factorial design were used for the optimization. The concentration of sodium alginate, were taken in 3 level low, medium, high and the prepared formulation were evaluated.


Sign in / Sign up

Export Citation Format

Share Document