scholarly journals A Systematic View Exploring the Role of Chloroplasts in Plant Abiotic Stress Responses

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yo-Han Yoo ◽  
Woo-Jong Hong ◽  
Ki-Hong Jung

Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield. The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs. The characteristics were analyzed by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related genes were found to affect abiotic stress response mainly through high temperature response, with little effect on response to drought and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize temperature changes in the environment. Furthermore, the predicted protein–protein interaction network analysis associated with high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts will respond to future climate changes.

2020 ◽  
Vol 299 ◽  
pp. 113605
Author(s):  
Diana C. Castañeda-Cortés ◽  
Jing Zhang ◽  
Agustín F. Boan ◽  
Valerie S. Langlois ◽  
Juan I. Fernandino

1970 ◽  
Vol 34 (3) ◽  
pp. 360-372 ◽  
Author(s):  
M Ataur Rahman ◽  
Jiro Chikushi ◽  
Satoshi Yoshida ◽  
AJMS Karim

High temperature stress during grain-filling period is one of the major environmental constraints limiting the grain yield of wheat in Bangladesh. Crop growth response and relative performance of yield components of ten wheat genotypes were studied in two temperature conditions in glass rooms in a Phytotron to identify the genotype tolerant to high temperature stress. A favourable day/night temperatures of 15/10, 20/15, and 25/20°C were maintained from sowing to 60 days after sowing (DAS), 61 to 80 DAS and 81 DAS to maturity, respectively, in one glass room (G1); whereas day/night temperatures in another glass room (G2) was always maintained at 5°C higher than that of G1. Green leaf area and number of tillers in different times, number of days for the occurrence of major crop growth stages, relative performance in yield components, grain yield and heat susceptibility index were estimated following the standard methods. The higher temperature enhanced plant growth, flowering, and maturation. Thus the number of days to booting, heading, anthesis, and maturity of wheat were significantly decreased that varied among the genotypes. Green leaf area and productive tillers/plant were drastically reduced in time under high temperature. The reduced number of grains/spike and smaller grain size resulted from drastic reduction in growth duration were responsible for the yield loss of wheat at high temperature. Out of ten wheat genotypes, three were characterized as high temperature tolerant based on their relative performance in yield components, grain yield and heat susceptibility index. Key Words: High-temperature tolerance, wheat genotype, growth and yield components. DOI: 10.3329/bjar.v34i3.3961 Bangladesh J. Agril. Res. 34(3) : 361-372, September 2009


Author(s):  
Manu Priya ◽  
Aditya Pratap ◽  
Debjoti Sengupta ◽  
Kadambot H.M Siddique ◽  
N.P. Singh ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 809 ◽  
Author(s):  
Song ◽  
Fan ◽  
Jiao ◽  
Liu ◽  
Wang ◽  
...  

Temperature is a primary factor affecting the rate of plant development; as the climate warms, extreme temperature events are likely to increasingly affect agriculture. Understanding how to improve crop tolerance to heat stress is a key concern. Wild plants have evolved numerous strategies to tolerate environmental conditions, notably the regulation of root architecture by phytohormones, but the molecular mechanisms of stress resistance are unclear. In this study, we showed that high temperatures could significantly reduce tobacco biomass and change its root architecture, probably through changes in auxin content and distribution. Overexpression of the OsPT8 phosphate transporter enhanced tobacco tolerance to high-temperature stress by changing the root architecture and increased the antioxidant ability. Molecular assays suggested that overexpression of OsPT8 in tobacco significantly increased the expression of auxin synthesis genes NtYUCCA 6, 8 and auxin efflux carriers genes NtPIN 1,2 under high-temperature stress. We also found that the expression levels of auxin response factors NtARF1 and NtARF2 were increased in OsPT8 transgenic tobacco under high-temperature stress, suggesting that OsPT8 regulates auxin signaling in response to high-temperature conditions. Our findings provided new insights into the molecular mechanisms of plant stress signaling and showed that OsPT8 plays a key role in regulating plant tolerance to stress conditions.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1916
Author(s):  
Zhiqi Li ◽  
Qian Xie ◽  
Jiahui Yan ◽  
Jianqing Chen ◽  
Qingxi Chen

Growth regulatory factors (GRF) are plant-specific transcription factors that play an important role in plant resistance to stress. This gene family in strawberry has not been investigated previously. In this study, 10 GRF genes were identified in the genome of the diploid woodland strawberry (Fragaria vesca). Chromosome analysis showed that the 10 FvGRF genes were unevenly distributed on five chromosomes. Phylogenetic analysis resolved the FvGRF proteins into five groups. Genes of similar structure were placed in the same group, which was indicative of functional redundance. Whole-genome duplication/segmental duplication and dispersed duplication events effectively promoted expansion of the strawberry GRF gene family. Quantitative reverse transcription-PCR analysis suggested that FvGRF genes played potential roles in the growth and development of vegetative organs. Expression profile analysis revealed that FvGRF3, FvGRF5, and FvGRF7 were up-regulated under low-temperature stress, FvGRF4 and FvGRF9 were up-regulated under high-temperature stress, FvGRF6 and FvGRF8 were up-regulated under drought stress, FvGRF3, FvGRF6, and FvGRF8 were up-regulated under salt stress, FvGRF2, FvGRF7, and FvGRF9 were up-regulated under salicylic acid treatment, and FvGRF3, FvGRF7, FvGRF9, and FvGRF10 were up-regulated under abscisic acid treatment. Promoter analysis indicated that FvGRF genes were involved in plant growth and development and stress response. These results provide a theoretical and empirical foundation for the elucidation of the mechanisms of abiotic stress responses in strawberry.


Sign in / Sign up

Export Citation Format

Share Document