High temperature stress response is not sexually dimorphic at the whole-body level and is dependent on androgens to induce sex reversal

2020 ◽  
Vol 299 ◽  
pp. 113605
Author(s):  
Diana C. Castañeda-Cortés ◽  
Jing Zhang ◽  
Agustín F. Boan ◽  
Valerie S. Langlois ◽  
Juan I. Fernandino
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yo-Han Yoo ◽  
Woo-Jong Hong ◽  
Ki-Hong Jung

Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield. The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs. The characteristics were analyzed by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related genes were found to affect abiotic stress response mainly through high temperature response, with little effect on response to drought and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize temperature changes in the environment. Furthermore, the predicted protein–protein interaction network analysis associated with high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts will respond to future climate changes.


2009 ◽  
Vol 7 (1) ◽  
pp. 33 ◽  
Author(s):  
Apiradee Hongsthong ◽  
Matura Sirijuntarut ◽  
Rayakorn Yutthanasirikul ◽  
Jittisak Senachak ◽  
Pavinee Kurdrid ◽  
...  

2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Khalil Ahmed Laghari ◽  
Abdul Jabbar Pirzada ◽  
Mahboob Ali Sial ◽  
Muhammad Athar Khan ◽  
Jamal Uddin Mangi

2020 ◽  
Vol 52 (5) ◽  
Author(s):  
De-Gong Wu ◽  
Qiu-Wen Zhan ◽  
Hai-Bing Yu ◽  
Bao-Hong Huang ◽  
Xin-Xin Cheng ◽  
...  

Author(s):  
D-J Kim ◽  
I-G Kim ◽  
J-Y Noh ◽  
H-J Lee ◽  
S-H Park ◽  
...  

Abstract As DRAM technology extends into 12-inch diameter wafer processing, plasma-induced wafer charging is a serious problem in DRAM volume manufacture. There are currently no comprehensive reports on the potential impact of plasma damage on high density DRAM reliability. In this paper, the possible effects of floating potential at the source/drain junction of cell transistor during high-field charge injection are reported, and regarded as high-priority issues to further understand charging damage during the metal pad etching. The degradation of block edge dynamic retention time during high temperature stress, not consistent with typical reliability degradation model, is analyzed. Additionally, in order to meet the satisfactory reliability level in volume manufacture of high density DRAM technology, the paper provides the guidelines with respect to plasma damage. Unlike conventional model as gate antenna effect, the cell junction damage by the exposure of dummy BL pad to plasma, was revealed as root cause.


Sign in / Sign up

Export Citation Format

Share Document