scholarly journals Experimental Study on Dynamic Tensile Failure of Sandstone Specimens with Different Water Contents

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ming Li ◽  
Gang Lin ◽  
Wei Zhou ◽  
Xianbiao Mao ◽  
Lianying Zhang ◽  
...  

Understanding the effect of water saturation on dynamic failure of rocks is of great importance to tunnel excavation at water-rich coal mines and prevention of rock bursts by water injection. Dynamic Brazilian disc tests are performed to study mechanical behaviour of sandstones in this paper. The results indicate that water saturation significantly weakens the dynamic tensile strength of sandstones and increases the specimen strain at which the specimen fails. The damage degree of sandstones reduces gradually with increasing water contents. Failure of the sandstone specimen includes the crack initiation at the center of the specimen, macroscopic crack propagation, and stretch of the macroscopic crack through the specimen. In addition, parallel macroscopic crack propagation is found in the specimen with a low water content. From the observation of fracture sections, microstructures are compact in the specimen with high water contents. This is due to the swell of the kaolinite in the specimen after water saturation. The failure mechanism of microstructures is typical brittle failure in the specimen with a high water content, whereas ductile fracture is found in the specimen with a low water content. Different failure processes of microstructures lead to the differences between mechanical properties and macroscopic failure characteristics of the specimens with various water contents.

1975 ◽  
Vol 2 (3) ◽  
pp. 253 ◽  
Author(s):  
B Acock

A model is proposed which makes it possible to estimate the intracellular turgor pressure potential, intracellular osmotic plus matric potential, and intra- and extracellular soIution fractions of water in leaf tissue at any water content. The model requires only the data normally collected with a thermocouple psychrometer: total water potential of live and dead (cells ruptured) tissue at various known water contents. The major assumptions are that (1) the total potential of water in the solution fraction in any part of the tissue multiplied by the volume of water is constant; (2) extracellular water experiences no pressure potential; (3) matrix-bound water is held only by matric forces and contains no solute; (4) the solution fraction of the intracellular water is constant at high water content; and (5) matrix-bound water content is constant over the range of leaf water contents normally examined. The models developed to deal with pressure bomb data are examined critically and doubts are cast on the validity of some of their assumptions.


1939 ◽  
Vol 17c (12) ◽  
pp. 460-482 ◽  
Author(s):  
R. Darnley Gibbs

Previous work by the author on the water contents of Canadian trees is reviewed and followed by a brief discussion of questions yet to be answered.In Betula alba v. papyrifera, in at least the young parts of B. alba v. pendula laciniata, in B. populifolia, and in several sizes of Populus tremuloides, there is a marked seasonal rhythm in water content. The maximum is at leaf opening, the minimum at leaf fall. In poplar but not in birch there is a very high water content in December. During winter a considerable loss of water may occur. A winter loss is shown also by the wood of hemlock and larch and by twigs and leaves of white pine and hemlock. Losses from leaves are surprisingly small.The behaviour of B. populifolia has been studied for more than three years, and differences have been correlated with observations on weather conditions. Experimental work on movement of water in this species during winter is inconclusive. This work continues.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 441 ◽  
Author(s):  
Xinshang Bao ◽  
Liqiang Yang ◽  
Wenyan He ◽  
Xue Gao

The Beiya Au deposit is the largest Cenozoic Au deposit in the Jinshajiang-Ailaoshan porphyry metallogenic belt. Numerous studies document that high water content and fO2 are vital factors for the generation of Au mineralization. In this belt, only the Wandongshan and Hongnitang districts are considered to be of economic importance, while the other districts, such as Bailiancun, are barren. So in order to reveal the importance of water content and oxidation state for Beiya porphyry-style Au mineralization, the amphiboles and zircons compositions are used to evaluate the physicochemical conditions (e.g., pressure, temperature, fO2, and water content) of the Wandongshan ore-fertile porphyries and Bailiancun ore-barren porphyries observed in the Beiya Au deposit. The results show that the water content of the Wandongshan parent magma (≤4.11 ± 0.4 wt %) are slightly higher than those of the parent magma at Bailiancun (≤3.91 ± 0.4 wt %), while the emplacement pressure of the Wandongshan parent magma (31.5–68.6 MPa) is much lower than that of the parent magma at Bailiancun (142.3–192.8 MPa), indicating that the Wandongshan magma reached water saturation earlier. In addition, the Wandongshan porphyries crystallized from more oxidized magma (average of ΔFMQ = +3.5) with an average temperature of 778 °C compared to the Bailiancun porphyries (average of ΔFMQ = +1.5) with a mean magmatic temperature of 770 °C. The Ce4+/Ce3+ ratio of zircon in the Wandongshan ore-related intrusions (average Ce4+/Ce3+ of 62.00) is much higher than that of the Bailiancun barren porphyries (average Ce4+/Ce3+of 23.15), which further confirmed Wandongshan ore-related magma is more oxidized than the Bailiancun barren magma. Therefore, melts that are more enriched in water and with a high oxidation state will be more fertile to form an economic porphyry-style Au system.


2016 ◽  
Vol 46 (8) ◽  
pp. 1035-1041
Author(s):  
Markku Nygren ◽  
Katri Himanen ◽  
Hanna Ruhanen

Scots pine (Pinus silvestris L.) cone and seed water contents were analyzed in two consecutive seasons during maturation stage in the autumn and in January and March before seed dispersal. Cones with different water contents were subjected to 2 h of freezing at −30 °C, and seed viability and laboratory germination of seeds from individual cones after treatment were analyzed. Seed water content could be well predicted with the measurement of the cone water content, and the general relationship between these two could be described with a generalized logistic function. On average, the water content of cones was 5%–10% units higher than the seeds inside them. The higher the cone water content at the onset of freezing treatment, the higher the proportion of seeds with apparent damage (based on visual inspection of seeds using X-ray images) in that particular cone. High water content in cones also resulted in decreased germination after freezing treatment. The critical cone water content for 50% germination after freezing at −30 °C was approximately 31.3% (fresh mass basis). This corresponds to 21.6% water content in seeds.


2020 ◽  
Author(s):  
Sisi Lin ◽  
Guillermo Hernandez Ramirez

<p>Thaw-induced N<sub>2</sub>O emissions have been shown to account for 30-90% of N<sub>2</sub>O emissions in agricultural fields. Due to the climate change, increased precipitatio is expected in fall and winter seasons for certain regions. As a result, this would in turn enhance the thaw-induced N<sub>2</sub>O emissions and aggravate climate change. A mesocosm study was conducted to investigate N<sub>2</sub>O production and sources from soils under elevated soil moisture contents in response to a simulated fall-freeze-thaw cycle. Treatments included two levels of N addition (urea versus control) and two different management histories [with (SW) and without (CT) manure additions]. Our results showed that at least 92% of the N<sub>2</sub>O emissions during the study were produced during the simulated thawing across all treatments. The thaw-induced N<sub>2</sub>O emissions increased with increasing soil water content. The fall-applied urea increased the soil-derived N<sub>2</sub>O emissions during thawing, indicating an excessive mineralization of soil organic N. Compared to the CT soils, the SW soils induced more soil-derived N<sub>2</sub>O emissions. This could be because the SW soil had more easily decomposable organic matter which was likely due to historical manure additions. Regarding to the daily primed N<sub>2</sub>O fluxes, different soil water contents impacted the dynamics of daily priming effect. At the high water content, the soils experienced a shift in daily primed N<sub>2</sub>O fluxes from positive to negative and eventually back to positive throughout the simulated thawing, while the soils at lower water contents underwent positive primed fluxes in general. The shift in daily primed fluxes was probably driven by the preference of soil microbes on the labile N substrates. When the microbes switched from easily to moderately decomposed substrates (e.g., from dissolved organic N to plant residuals), they started to uptake inorganic N from the soil due to a relatively high C:N ratio of plant residuals. Therefore, a net N immobilization and negative primed N<sub>2</sub>O production occur in the short term in the soils at the high water content.</p>


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2019 ◽  
Vol 67 (7) ◽  
pp. 4803-4810 ◽  
Author(s):  
Xiong Wang ◽  
Tao Qin ◽  
Yexian Qin ◽  
Ahmed H. Abdelrahman ◽  
Russell S. Witte ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shun-ichiro Karato ◽  
Bijaya Karki ◽  
Jeffrey Park

AbstractOceans on Earth are present as a result of dynamic equilibrium between degassing and regassing through the interaction with Earth’s interior. We review mineral physics, geophysical, and geochemical studies related to the global water circulation and conclude that the water content has a peak in the mantle transition zone (MTZ) with a value of 0.1–1 wt% (with large regional variations). When water-rich MTZ materials are transported out of the MTZ, partial melting occurs. Vertical direction of melt migration is determined by the density contrast between the melts and coexisting minerals. Because a density change associated with a phase transformation occurs sharply for a solid but more gradually for a melt, melts formed above the phase transformation depth are generally heavier than solids, whereas melts formed below the transformation depth are lighter than solids. Consequently, hydrous melts formed either above or below the MTZ return to the MTZ, maintaining its high water content. However, the MTZ water content cannot increase without limit. The melt-solid density contrast above the 410 km depends on the temperature. In cooler regions, melting will occur only in the presence of very water-rich materials. Melts produced in these regions have high water content and hence can be buoyant above the 410 km, removing water from the MTZ. Consequently, cooler regions of melting act as a water valve to maintain the water content of the MTZ near its threshold level (~ 0.1–1.0 wt%). Mass-balance considerations explain the observed near-constant sea-level despite large fluctuations over Earth history. Observations suggesting deep-mantle melting are reviewed including the presence of low-velocity anomalies just above and below the MTZ and geochemical evidence for hydrous melts formed in the MTZ. However, the interpretation of long-term sea-level change and the role of deep mantle melting in the global water circulation are non-unique and alternative models are reviewed. Possible future directions of studies on the global water circulation are proposed including geodynamic modeling, mineral physics and observational studies, and studies integrating results from different disciplines.


Sign in / Sign up

Export Citation Format

Share Document