scholarly journals Standalone Velocity Estimation Method for BDS Receiver Based on Improved ARUKF

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zilong Shen ◽  
Wenxiang Liu ◽  
Jing Peng ◽  
Feixue Wang ◽  
Wei Xiao

The Carrier-Phase-Derived Doppler (CPDD) observation is an important type of observation for high-precision standalone velocity estimation (SVE) with the BeiDou Navigation Satellite System (BDS) receiver. The CPDD observation is susceptible to receiver clock jump, carrier-phase cycle slips, and multipath error. How to improve the accuracy and reliability of the SVE method based on the CPDD observation has become an urgent problem to be solved. Based on the Velocity Domain Selective Fusion (VDSF) strategy, this paper proposes the VDSF-ARUKF method for accuracy and reliability improvement of the SVE results of the original ARUKF method. In this improved ARUKF method, the CPDD observation and the raw Doppler observation are fused together based on the detection statistic under the framework of the Adaptively Robust Unscented Kalman Filter (ARUKF). Based on actual observations of the BDS receiver, a set of testing experiments were designed to verify the effectiveness of this improved ARUKF method. The experimental results show that the SVE method of the BDS receiver based on the VDSF-ARUKF can improve the accuracy and reliability of the ARUKF SVE results of the BDS receiver. In the case of multidimensional gross errors in the CPDD observations, the VDSF-ARUKF method can still obtain the SVE results with the highest accuracy on the order of several 10−2m/s when compared with the VDFF-ARUKF method and the ARUKF method using the CPDD observations.

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 304 ◽  
Author(s):  
Salma Zainab Farooq ◽  
Dongkai Yang ◽  
Echoda Ngbede Joshua Ada

Single frequency real-time kinematic (RTK) positioning is expected to be the leading implementation platform for a variety of emerging GNSS mass-market applications. During RTK positioning, the most common source of measurement errors is carrier-phase cycle slips (CS). The presence of CS in carrier-phase measurements is tested by a CS detection technique and correspondingly taken care of. While using CS prone measurement data, positioning reliability is an area of concern for RTK users. Reliability can be linked with the CS detection scheme through a least squares (LS) adjustment process. This paper proposes a CS detection framework for reliable RTK positioning using single-frequency GNSS receivers. The scheme uses double differenced measurements for CS detection via LS adjustment using a detection, identification, and adaptation approach. For reliable positioning, the procedure to link the detection and identification stages is described. Through tests conducted on kinematic data, internal and external reliability are theoretically determined by calculating minimal detectable bias (MDB) and marginally detectable errors, respectively. After introducing CS, the actual values of MDB are found to be four cycles, which are higher than the theoretically obtained values of one and two cycles. Although CS detection for reliable positioning is implemented for single-frequency RTK users, the proposed procedure is generic and can be used whenever CS are detected through statistical tests during LS adjustment.


2021 ◽  
Author(s):  
Qingqing Xiang ◽  
Zhiqiang Liu ◽  
Guang Liu

Abstract In this paper, Simulink and Carsim are combined to study the velocity estimation of distributed drive electric vehicles. Firstly, the minimum co-simulation system is established to complete the design and debugging of the algorithm. Then, a new algorithm combining unscented Kalman filter and strong tracking filter is proposed based on the vehicle estimation model. The accuracy and real-time performance of the velocity estimation algorithm are validated by simulation under snake-shaped driving conditions with different road adhesion coefficients. Finally, an experimental test is carried out to verify the effectiveness of the proposed algorithm in estimating vehicle velocity.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shaohua Chen ◽  
Yang Gao

Carrier phase measurements are essential to high precision positioning. Usually, the carrier phase measurements are generated from the phase lock loop in a conventional Global Navigation Satellite System (GNSS) receiver. However there is a dilemma problem to the design of the loop parameters in a conventional tracking loop. To address this problem and improve the carrier phase tracking sensitivity, a carrier phase tracking method based on a joint vector architecture is proposed. The joint vector architecture contains a common loop based on extended Kalman filter to track the common dynamics of the different channels and the individual loops for each channel to track the satellite specific dynamics. The transfer function model of the proposed architecture is derived. The proposed method and the conventional scalar carrier phase tracking are tested with a high quality simulator. The test results indicate that carrier phase measurements of satellites start to show cycle slips using the proposed method when carrier noise ratio is equal to and below 15 dB-Hz instead of 21 dB-Hz with using the conventional phase tracking loop. Since the joint vector based tracking loops jointly process the signals of all available satellites, the potential interchannel influence between different satellites is also investigated.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4584 ◽  
Author(s):  
Rui Tu ◽  
Rui Zhang ◽  
Lihong Fan ◽  
Junqiang Han ◽  
Pengfei Zhang ◽  
...  

The orbital maneuvers of the global navigation satellite system (GNSSs) have a significant influence on the performance of the precise positioning, navigation, and timing (PNT) services. Because the Chinese BeiDou Navigation Satellite System (BDS) has three types of satellites in the geostationary orbit (GEO), inclined geosynchronous orbit (IGSO), and medium earth orbit (MEO) maneuvers occur more frequently. Thus, it is essential to determine an effective approach for the detection of orbital maneuvers. This study proposes a method for the detection of orbital maneuvers using epoch-differenced carrier phase observations and broadcast ephemeris data. When using the epoch-differenced velocity estimation as a basic data solution model, the time discrimination and satellite identification factors are defined and used for the real-time detection of the beginning and the pseudorandom noise code (PRN) of satellites. The datasets from four GNSS stations (WUH1, BJF1, POHN, CUT0) from the year 2016 were collected and analyzed. The validations showed that the beginning, the PRN of the orbital maneuver of the satellite can be precisely detected in real time for all GEO, IGSO, and MEO satellites, and the detected results also showed good consistency, with the beginning time at a difference of 1–2 min across different stations. The proposed approach was observed to be more sensitive, and the detected beginning time was about 30 min earlier than the single point positioning approach when the high-precision carrier phase observation was used. Thus, orbital maneuvering can be accurately detected by the proposed method. It not only improves the utilization of the collected data but also improves the performance of PNT services.


2017 ◽  
Vol 70 (3) ◽  
pp. 580-594 ◽  
Author(s):  
Shirong Ye ◽  
Yongwei Yan ◽  
Dezhong Chen

The regional part of the current BeiDou navigation satellite system (BDS) consists of five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. We examined three algorithms for BDS velocity estimation. In addition, the performance of velocity estimation using different BDS satellite combinations was analysed. Static tests demonstrated that velocity precision using Raw Doppler (RD) measurements was of the order of centimetres per second, whereas the carrier-phase-Derived Doppler (DD) measurements and Time-Differenced Carrier Phase (TDCP) method provided accuracies of the order of millimetres per second. Because of the irregularity of the satellites' distribution, three peaks exist on the north component in the 24-hour velocity series. Besides, the GEO satellites contribute significantly in velocity estimation and the satellites' geometry condition seriously declined when excluding GEO satellites. In kinematic tests, the root mean square of the velocity error derived by DD and TDCP both attained the centimetre per second level. Moreover, the precision of velocity determination with these three methods was degraded by the sudden acceleration of the vehicle.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3029 ◽  
Author(s):  
Duan ◽  
Sun ◽  
Ouyang ◽  
Chen ◽  
Shi

In the traditional raw Doppler (RD) velocity estimation method, the positioning error of the pseudorange-based global navigation satellite system (GNSS) single point positioning (SPP) solution affects the accuracy of the velocity estimation through the station-satellite unit cosine vector. To eliminate the effect of positioning errors, this paper proposes a carrier-phase-based second generation of the BeiDou navigation satellite system (BDS-2) precise point positioning (PPP) RD velocity estimation method. Compared with the SPP positioning accuracy of tens of meters, the BDS-2 kinematic PPP positioning accuracy is significantly improved to the dm level. In order to verify the reliability and applicability of the developed method, three dedicated tests, the vehicle-borne, ship-borne and air-borne platforms, were conducted. In the vehicle-borne experiment, the GNSS and inertial navigation system (INS)-integrated velocity solution was chosen as the reference. The velocity accuracy of the BDS-2 PPP RD method was better than that of SPP RD by 28.4%, 27.1% and 26.1% in the east, north and up directions, respectively. In the ship-borne and air-borne experiments, the BDS-2 PPP RD velocity accuracy was improved by 17.4%, 21.4%, 17.8%, and 38.1%, 17.6%, 17.5% in the same three directions, respectively, compared with the BDS-2 SPP RD solutions. The reference in these two tests is the real-time kinematic (RTK) Position Derivation (PD)-based velocity.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jin Wang ◽  
Qin Zhang ◽  
Guanwen Huang

AbstractThe Fractional Cycle Bias (FCB) product is crucial for the Ambiguity Resolution (AR) in Precise Point Positioning (PPP). Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane (WL) and Narrow Lane (NL) combinations, the uncombined PPP model is flexible and effective to generate the FCB products. This study presents the FCB estimation method based on the multi-Global Navigation Satellite System (GNSS) precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System (iGMAS) observations using the uncombined PPP model. The dual-frequency raw ambiguities are combined by the integer coefficients (4,− 3) and (1,− 1) to directly estimate the FCBs. The details of FCB estimation are described with the Global Positioning System (GPS), BeiDou-2 Navigation Satellite System (BDS-2) and Galileo Navigation Satellite System (Galileo). For the estimated FCBs, the Root Mean Squares (RMSs) of the posterior residuals are smaller than 0.1 cycles, which indicates a high consistency for the float ambiguities. The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems, while the STandard Deviation (STD) of the NL FCBs for BDS-2 is larger than 0.139 cycles. The combined FCBs have better stability than the raw series. With the multi-GNSS FCB products, the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations. For hourly static positioning results, the performance of the PPP AR with the three-system observations is improved by 42.6%, but only 13.1% for kinematic positioning results. The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo, supported by multi-GNSS satellite orbit, clock, and FCB products based on iGMAS.


Sign in / Sign up

Export Citation Format

Share Document