scholarly journals Predictive Models for the Medical Diagnosis of Dengue: A Case Study in Paraguay

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jorge D. Mello-Román ◽  
Julio C. Mello-Román ◽  
Santiago Gómez-Guerrero ◽  
Miguel García-Torres

Early diagnosis of dengue continues to be a concern for public health in countries with a high incidence of this disease. In this work, we compared two machine learning techniques: artificial neural networks (ANN) and support vector machines (SVM) as assistance tools for medical diagnosis. The performance of classification models was evaluated in a real dataset of patients with a previous diagnosis of dengue extracted from the public health system of Paraguay during the period 2012–2016. The ANN multilayer perceptron achieved better results with an average of 96% accuracy, 96% sensitivity, and 97% specificity, with low variation in thirty different partitions of the dataset. In comparison, SVM polynomial obtained results above 90% for accuracy, sensitivity, and specificity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tom Elliot ◽  
Robert Morse ◽  
Duane Smythe ◽  
Ashley Norris

AbstractIt is 50 years since Sieveking et al. published their pioneering research in Nature on the geochemical analysis of artefacts from Neolithic flint mines in southern Britain. In the decades since, geochemical techniques to source stone artefacts have flourished globally, with a renaissance in recent years from new instrumentation, data analysis, and machine learning techniques. Despite the interest over these latter approaches, there has been variation in the quality with which these methods have been applied. Using the case study of flint artefacts and geological samples from England, we present a robust and objective evaluation of three popular techniques, Random Forest, K-Nearest-Neighbour, and Support Vector Machines, and present a pipeline for their appropriate use. When evaluated correctly, the results establish high model classification performance, with Random Forest leading with an average accuracy of 85% (measured through F1 Scores), and with Support Vector Machines following closely. The methodology developed in this paper demonstrates the potential to significantly improve on previous approaches, particularly in removing bias, and providing greater means of evaluation than previously utilised.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoaki Mameno ◽  
Masahiro Wada ◽  
Kazunori Nozaki ◽  
Toshihito Takahashi ◽  
Yoshitaka Tsujioka ◽  
...  

AbstractThe purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 implants with at least 4 years in function. Demographic data and parameters known to be risk factors for the development of peri-implantitis were analyzed with three models: logistic regression, support vector machines, and random forests (RF). As the results, RF had the highest performance in predicting the onset of peri-implantitis (AUC: 0.71, accuracy: 0.70, precision: 0.72, recall: 0.66, and f1-score: 0.69). The factor that had the most influence on prediction was implant functional time, followed by oral hygiene. In addition, PCR of more than 50% to 60%, smoking more than 3 cigarettes/day, KMW less than 2 mm, and the presence of less than two occlusal supports tended to be associated with an increased risk of peri-implantitis. Moreover, these risk indicators were not independent and had complex effects on each other. The results of this study suggest that peri-implantitis onset was predicted in 70% of cases, by RF which allows consideration of nonlinear relational data with complex interactions.


2014 ◽  
Vol 28 (2) ◽  
pp. 3-28 ◽  
Author(s):  
Hal R. Varian

Computers are now involved in many economic transactions and can capture data associated with these transactions, which can then be manipulated and analyzed. Conventional statistical and econometric techniques such as regression often work well, but there are issues unique to big datasets that may require different tools. First, the sheer size of the data involved may require more powerful data manipulation tools. Second, we may have more potential predictors than appropriate for estimation, so we need to do some kind of variable selection. Third, large datasets may allow for more flexible relationships than simple linear models. Machine learning techniques such as decision trees, support vector machines, neural nets, deep learning, and so on may allow for more effective ways to model complex relationships. In this essay, I will describe a few of these tools for manipulating and analyzing big data. I believe that these methods have a lot to offer and should be more widely known and used by economists.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


Author(s):  
Hesham M. Al-Ammal

Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection.


2020 ◽  
Vol 24 (5) ◽  
pp. 1141-1160
Author(s):  
Tomás Alegre Sepúlveda ◽  
Brian Keith Norambuena

In this paper, we apply sentiment analysis methods in the context of the first round of the 2017 Chilean elections. The purpose of this work is to estimate the voting intention associated with each candidate in order to contrast this with the results from classical methods (e.g., polls and surveys). The data are collected from Twitter, because of its high usage in Chile and in the sentiment analysis literature. We obtained tweets associated with the three main candidates: Sebastián Piñera (SP), Alejandro Guillier (AG) and Beatriz Sánchez (BS). For each candidate, we estimated the voting intention and compared it to the traditional methods. To do this, we first acquired the data and labeled the tweets as positive or negative. Afterward, we built a model using machine learning techniques. The classification model had an accuracy of 76.45% using support vector machines, which yielded the best model for our case. Finally, we use a formula to estimate the voting intention from the number of positive and negative tweets for each candidate. For the last period, we obtained a voting intention of 35.84% for SP, compared to a range of 34–44% according to traditional polls and 36% in the actual elections. For AG we obtained an estimate of 37%, compared with a range of 15.40% to 30.00% for traditional polls and 20.27% in the elections. For BS we obtained an estimate of 27.77%, compared with the range of 8.50% to 11.00% given by traditional polls and an actual result of 22.70% in the elections. These results are promising, in some cases providing an estimate closer to reality than traditional polls. Some differences can be explained due to the fact that some candidates have been omitted, even though they held a significant number of votes.


2020 ◽  
Vol 17 (8) ◽  
pp. 3598-3604
Author(s):  
M. S. Roobini ◽  
M. Lakshmi

Alzheimer’s Disease (AD) is a standout amongst the most familiar types of memory loss influencing a huge number of senior individuals around the world which is the main source of dementia and memory misfortune. AD causes shrinkage in hippocampus and cerebral cortex and it grows the ventricles in the mind Enhancing home and network based composed consideration is basic to alleviating Alzheimer’s impacts on people and families and to decreasing mounting medicinal services costs. Distinguishing early morphological changes in the mind and making early determination are vital for Alzheimer’s ailment (AD). A few machine learning techniques, for example, Support vector machines have been utilized and a portion of these strategies have been appeared to be extremely compelling in diagnosing AD from neuroimages, some of the time significantly more viable than human radiologists. MRI uncover the data of AD however decay districts are diverse for various individuals which makes the finding somewhat trickier. By utilizing Convolutional Neural Networks, the issue can be settled with insignificant mistake rate. This paper proposes a profound Convolutional Neural Network (CNN) for Alzheimer’s Disease finding utilizing mind MRI information examination. The calculation was prepared and tried utilizing the MRI information from Alzheimer’s Disease Neuroimaging Initiative.


2021 ◽  
pp. 1-29
Author(s):  
Ahmed Alsaihati ◽  
Mahmoud Abughaban ◽  
Salaheldin Elkatatny ◽  
Abdulazeez Abdulraheem

Abstract Fluid loss into formations is a common operational issue that is frequently encountered when drilling across naturally or induced fractured formations. This could pose significant operational risks, such as well-control, stuck pipe, and wellbore instability, which, in turn, lead to an increase of well time and cost. This research aims to use and evaluate different machine learning techniques, namely: support vector machines, random forests, and K-nearest neighbors in detecting loss circulation occurrences while drilling using solely drilling surface parameters. Actual field data of seven wells, which had suffered partial or severe loss circulation, were used to build predictive models, while Well-8 was used to compare the performance of the developed models. Different performance metrics were used to evaluate the performance of the developed models. Recall, precision, and F1-score measures were used to evaluate the ability of the developed model to detect loss circulation occurrences. The results showed the K-nearest neighbors classifier achieved a high F1-score of 0.912 in detecting loss circulation occurrence in the testing set, while the random forests was the second-best classifier with almost the same F1-score of 0.910. The support vector machines achieved an F1-score of 0.83 in predicting the loss circulation occurrence in the testing set. The K-nearest neighbors outperformed other models in detecting the loss circulation occurrences in Well-8 with an F1-score of 0.80. The main contribution of this research as compared to previous studies is that it identifies losses events based on real-time measurements of the active pit volume.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hayk Baluyan ◽  
Bikash Joshi ◽  
Amer Al Hinai ◽  
Wei Lee Woon

A new method for detecting rooftops in satellite images is presented. The proposed method is based on a combination of machine learning techniques, namely, k-means clustering and support vector machines (SVM). Firstly k-means clustering is used to segment the image into a set of rooftop candidates—these are homogeneous regions in the image which are potentially associated with rooftop areas. Next, the candidates are submitted to a classification stage which determines which amongst them correspond to “true” rooftops. To achieve improved accuracy, a novel two-pass classification process is used. In the first pass, a trained SVM is used in the normal way to distinguish between rooftop and nonrooftop regions. However, this can be a challenging task, resulting in a relatively high rate of misclassification. Hence, the second pass, which we call the “histogram method,” was devised with the aim of detecting rooftops which were missed in the first pass. The performance of the model is assessed both in terms of the percentage of correctly classified candidates as well as the accuracy of the estimated rooftop area.


2020 ◽  
Vol 4 (1) ◽  
pp. 60-73
Author(s):  
Memoona Shaheen ◽  
Mehreen Arshad

Objective: The objective of this study was to examine and determine future directions in regard to future machine learning techniques based on the review of the current literature. Methodology: A systematic review has been used to review the current trends from the peer-reviewed journal articles in the past twenty years. For this study, four categories have been categorized, the use of neural networks, support vector machines, the use of a genetic algorithm, and the combination of hybrid techniques. Studies in each of these categorize have been evaluated. Finding: Firstly, there is a strong link between machine learning methods and the prediction problems they are associated with. The second conclusion that we can conclude from this review is that past studies need to improve its generalizability results. Most of the studies that have been reviewed in this analysis has only used the machine learning systems through the use of one market or during only a one time period without taking into consideration whether the system would be adaptable in other situations and conditions. Limitations, future trends, as well as policy implications have been defined.


Sign in / Sign up

Export Citation Format

Share Document