Nano-Catalysis Process for Treatment of Industrial Wastewater

Author(s):  
Manoj Kumar Karnena ◽  
Madhavi Konni ◽  
Vara Saritha

The rapid increase in population and urbanization leads to the scarcity of water resources in the present era. Therefore, effective wastewater treatment is a prerequisite for a growing economy. Development and implementing the advanced treatment technologies of wastewater with high efficiency and low capital is difficult. In the recent advancements among various treatment processes, nanomaterial science has been attracting the attention of researchers. However, limited collective knowledge is available in this context. The chapter reviews the potential of nano catalysis's process, mechanism, and current drawbacks in treatment technologies. It explains the different nano catalysts that are widely utilized for the treatment and removal of organic and inorganic pollutants in water and wastewater and discusses the nano-based photocatalytic, nano-based electrocatalysis, nano-based Fenton catalysis and their efficiency in various removal of pollutants from wastewater.

2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.


2021 ◽  
Vol 13 (10) ◽  
pp. 5717
Author(s):  
Mian Muhammad-Ahson Aslam ◽  
Hsion-Wen Kuo ◽  
Walter Den ◽  
Muhammad Usman ◽  
Muhammad Sultan ◽  
...  

As the world human population and industrialization keep growing, the water availability issue has forced scientists, engineers, and legislators of water supply industries to better manage water resources. Pollutant removals from wastewaters are crucial to ensure qualities of available water resources (including natural water bodies or reclaimed waters). Diverse techniques have been developed to deal with water quality concerns. Carbon based nanomaterials, especially carbon nanotubes (CNTs) with their high specific surface area and associated adsorption sites, have drawn a special focus in environmental applications, especially water and wastewater treatment. This critical review summarizes recent developments and adsorption behaviors of CNTs used to remove organics or heavy metal ions from contaminated waters via adsorption and inactivation of biological species associated with CNTs. Foci include CNTs synthesis, purification, and surface modifications or functionalization, followed by their characterization methods and the effect of water chemistry on adsorption capacities and removal mechanisms. Functionalized CNTs have been proven to be promising nanomaterials for the decontamination of waters due to their high adsorption capacity. However, most of the functional CNT applications are limited to lab-scale experiments only. Feasibility of their large-scale/industrial applications with cost-effective ways of synthesis and assessments of their toxicity with better simulating adsorption mechanisms still need to be studied.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Prashant Agarwal ◽  
Ritika Gupta ◽  
Neeraj Agarwal

Rapid industrialization, economic development, and population overgrowth are the major reasons responsible for the release of organic and inorganic substances into the environment, further leading to environmental pollution and contamination of water. Nowadays, it is truism that wastewater treatment has raised concern worldwide and is the need of the hour. Therefore, it is necessary to conserve sustainable energy and adopt advanced wastewater treatment technologies. Microalgae culture is gaining tremendous attention as it provides a combined benefit of treating wastewater as a growth medium and algae biomass production which can be used for several livestock purposes. Microalgae are ubiquitous and extremely diverse microorganisms which can accumulate toxic contaminants and heavy metals from wastewater, making them superior contender to become a powerful nanofactory. Furthermore, they are versatile, relatively convenient, and easy to handle, along with various other advantages such as synthesis can be performed at low temperature with greater energy efficiency, less toxicity, and low risk to the environment. Comparing with other organisms such as fungi, yeast, and bacteria, microalgae are equally important organisms in the synthesis of nanoparticles; therefore, the study of algae-mediated biosynthesis of nanometals can be taken towards a newer branch and it has been termed as phytonanotechnology. Here, an overview of recent advances in wastewater treatment processes through an amalgamation of nanoparticles and microalgae is provided.


Author(s):  
Kristina Tihomirova ◽  
Linda Mezule

Compulsory study course on wastewater treatment and sewage systems contains lectures, classroom calculations, technical project and laboratory practicum. The course is addressing not only the developing skills in wastewater treatment technologies but also provides preparation of professionals that can communicate with institutions involved in water and wastewater sector. Over the years it has been observed that even after receiving the most sophisticated knowledge and highest markings, students often lack skills in practical communication with industry and implementation of theoretical knowledge in praxis. Here we describe student-centred teaching method that is based on the activities that are similar to theatre and allow: (i) the teacher to find and understand the weaker places in student knowledge gained during the semester; (ii) the students to form professional skills during the active communication with colleagues and mentors from industry. The students work in several groups “INDUSTRY”, “MUNICIPALITY” and EXPERTS”, try to find better solution for industrial sewage treatment and cooperation model with the municipality and present their results. After 2 years of the modernisation and adjustment, the training course has created an interest not only from student side but also from the industry representatives that are interested in communication with the new specialists and develop strong contacts with the university.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Anastasios Zouboulis ◽  
Ioannis Katsoyiannis

The present Special Issue brought together recent research findings from renowned scientists in this field and assembled contributions on advanced technologies that have been applied to the treatment of wastewater and drinking water, with an emphasis on novel membrane treatment technologies. The 12 research contributions highlight various processes and technologies that can achieve the effective treatment and purification of wastewater and drinking water, aiming (occasionally) for water reuse. The published papers can be classified into three major categories. (a) First, there are those that investigate the application of membrane treatment processes, either directly or in hybrid processes. The role of organic matter presence and fouling control is the main aim of the research in some of these studies. (b) Second, there are studies that investigate the application of adsorptive processes for the removal of contaminants from waters, such as arsenic, antimony, or chromate, with the aim of the efficient removal of the toxic contaminants from water or wastewater. (c) Lastly, there are studies that include novel aspects of oxidative treatment such as bubbleless ozonation.


Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 14 ◽  
Author(s):  
Mouele ◽  
Dinu ◽  
Parau ◽  
Missengue ◽  
Vladescu ◽  
...  

The increased detection of organic pollutants in drinking water and their resistance to degradation by wastewater treatment processes has motivated the development of more efficient, affordable and sustainable methods of purification of drinking water and wastewater. [...]


2016 ◽  
Vol 18 (4) ◽  
pp. 855-866 ◽  

<p>Estradiol is known as the indicator of the presence of hormones as Endocrine Disruptor Compounds (EDCs) in water and wastewater. The entrance of these compounds into water resources through daily liquid wastes of societies as well as pharmaceutical industries, ranching, and pathology laboratories leads to an increase in their concentrations in these resources. Consequently, due to the metabolic properties of these substances they can cause adverse effects on consumers and aquatics. The main purpose of this research is to determine the occurrence and the fate of estradiol as indicator of endocrine-disrupting compounds in drinking water, surface water, and wastewater in Ahvaz, Iran. 17β-estradiol was detected in 37.5% of samples obtained from drinking water and 68.75% of samples from the Karun River. In the urban drinking water and Karun River, the mean concentrations of 17β-estradiol were 2.96 and 13.66<br /> ng l<sup>-1</sup>, respectively.</p> <p>In the domestic and industrial wastewater, the concentrations of 17β-estradiol were higher than that detected in the drinking and surface waters. The mean concentrations of this hormone in these wastewaters were 57.46 and 70.6 ng l<sup>-1</sup>, respectively. The highest amount of 17β-estradiol was measured in the hospital wastewater. The fate of 17β-estradiol in the slaughterhouse wastewater treatment plant, in which a septic tank, an anaerobic pond, and an aerobic tank were used for wastewater treatment, was higher than 75%. The highest level of removal in the aerobic stage was also obtained by breaking estradiol down to other metabolites.</p>


Sign in / Sign up

Export Citation Format

Share Document