scholarly journals STC2 Is a Potential Prognostic Biomarker for Pancreatic Cancer and Promotes Migration and Invasion by Inducing Epithelial–Mesenchymal Transition

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Chen Lin ◽  
Lina Sun ◽  
Shenglei Huang ◽  
Xiangqun Weng ◽  
Zhixian Wu

Aberrant expression of stanniocalcin 2 (STC2) is implicated in cancer development. STC2 acts as a tumor promoter to drive some cancers. However, its contribution to the development of pancreatic cancer remains unclear. This study showed that the expression of STC2 was significantly upregulated in pancreatic cancer tissues. Moreover, its expression was positively correlated with tumor size and lymph node metastasis and negatively correlated with 5-year survival rate of pancreatic cancer patients. Additionally, the expression levels of STC2 were a novel biomarker for predicting overall survival rate after surgery. Furthermore, overexpression of STC2 could promote the proliferation, migration, and invasion of pancreatic cancer cell lines, while knocking down of STC2 led to antiproliferation and antimetastasis activities. Further mechanistic investigations revealed that the expression of STC2 could significantly promote the epithelial–mesenchymal transition (EMT) in pancreatic cancer cells. These data indicated that the overexpression of STC2 in pancreatic cancer contributes to the metastasis through the promotion of EMT, suggesting that STC2 is a potential prognostic biomarker and therapeutic target for pancreatic cancer.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Qinhong Xu ◽  
Jiguang Ma ◽  
Jianjun Lei ◽  
Wanxing Duan ◽  
Liang Sheng ◽  
...  

α-Mangostin, a natural product isolated from the pericarp of the mangosteen fruit, has been shown to inhibit the growth of tumor cells in various types of cancers. However, the underlying molecular mechanisms are largely unclear. Here, we report thatα-mangostin suppressed the viability and epithelial-mesenchymal transition (EMT) of pancreatic cancer cells through inhibition of the PI3K/Akt pathway. Treatment of pancreatic cancer BxPc-3 and Panc-1 cells withα-mangostin resulted in loss of cell viability, accompanied by enhanced cell apoptosis, cell cycle arrest at G1 phase, and decrease of cyclin-D1. Moreover, Transwell and Matrigel invasion assays showed thatα-mangostin significantly reduced the migration and invasion of pancreatic cancer cells. Consistent with these results,α-mangostin decreased the expression of MMP-2, MMP-9, N-cadherin, and vimentin and increased the expression of E-cadherin. Furthermore, we found thatα-mangostin suppressed the activity of the PI3K/Akt pathway in pancreatic cancer cells as demonstrated by the reduction of the Akt phosphorylation byα-mangostin. Finally,α-mangostin significantly inhibited the growth of BxPc-3 tumor mouse xenografts. Our results suggest thatα-mangostin may be potentially used as a novel adjuvant therapy or complementary alternative medicine for the management of pancreatic cancers.


2018 ◽  
Vol 46 (5) ◽  
pp. 1930-1938 ◽  
Author(s):  
Yun-Peng Peng ◽  
Yi Zhu ◽  
Ling-Di Yin ◽  
Ji-Shu Wei ◽  
Xin-Chun Liu ◽  
...  

Background/Aims: PIK3R3 is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) which plays an essential role in the metastasis of several types of cancer. However, whether PIK3R3 can promote the metastasis of pancreatic cancer (PC) is still unclear. In this study, we characterized the role of PIK3R3 in metastasis of PC and underlying potential mechanisms. Methods: RT-PCR, western blot, immunofluorescence (IF) and immunohistochemistry (IHC) were applied to investigate the expression of genes and proteins in different cell lines and tissues. To assess the function of PIK3R3 and related mechanisms, the cells with RNAi-mediated knockdown or overexpression were used to perform a series of in vitro and in vivo assays. Results: PIK3R3 was significantly overexpressed in pancreatic cancer tissues, especially in metastatic cancer tissues, as well as in pancreatic cancer cells. Functional assays suggested that overexpression or knockdown of PIK3R3 could respectively promote or suppress the migration and invasion of PC cells in vitro and in vivo. Further mechanism related studies demonstrated that ERK1/2-ZEB1 pathway-triggered epithelial-mesenchymal transition (EMT) might be responsible for the PIK3R3-induced PC cell migration and invasion. Conclusion: PIK3R3 could promote the metastasis of PC by facilitating ZEB1 induced EMT, and could act as a potential therapeutic target to limit PC metastasis.


2020 ◽  
Vol 19 ◽  
pp. 153303381989872 ◽  
Author(s):  
Ning An ◽  
Bo Zheng

Objective: The aim of the present research is to study the roles of miR-203a-3p on cell proliferation, migration, invasion, and epithelial–mesenchymal transition in pancreatic cancer. Methods: Transcription profiles were acquired from Gene Expression Omnibus database, which was used to screen out the differentially expressed microRNAs and messenger RNAs in pancreatic cancer. Pancreatic cancer tissues were used to verify the bioinformatics results by quantitative real-time polymerase chain reaction. The relationship between miR-203a-3p and SLUG was examined by TargetScan software, dual-luciferase reporter assay, and RNA immunoprecipitation. The Cell Counting Kit-8, wound healing, and transwell assays were conducted to investigate the proliferation, migration, and invasion capability of pancreatic cancer cells, respectively. The expression of epithelial–mesenchymal transition–related proteins was determined by the Western blot assay. Xenograft assay was performed to verify findings from in vitro assays. Results: Bioinformatic analysis found that a total of 113 microRNAs and 1749 messenger RNAs expressed differentially in pancreatic cancer tissues. Among these microRNAs, the expression of miR-203a-3p was significantly decreased in both pancreatic cancer tissues and cells. On the other hand, the SLUG expression was remarkably upregulated in pancreatic cancer tissues and cells in comparison with normal tissues and cells. Moreover, TargetScan software, dual-luciferase reporter assay, and RNA immunoprecipitation revealed that SLUG was a target of miR-203a-3p. The upregulation of miR-203a-3p expression inhibited the proliferation, migration, and invasion ability of pancreatic cancer cells by suppressing the epithelial–mesenchymal transition process via sponging SLUG. Conclusion: These findings indicate that downregulation of miR-203a-3p in pancreatic cancer cells leads to high expression of SLUG, which promotes epithelial–mesenchymal transition process and induces cancer progression.


2021 ◽  
Author(s):  
ZHU ZENG ◽  
Shengbo Han ◽  
Yang Wang ◽  
Yan Huang ◽  
Yuhang Hu ◽  
...  

Abstract Background: Nutrient deprivation is a distinct feature of the tumor microenvironment that plays a crucial role in various cancers. However, the contribution and regulatory mechanism of nutrient deprivation on metastasis of pancreatic cancer (PC) have not been identified. Methods: PC cells were treated with normal medium, glucose-depletion or glutamine-depletion medium to observe the epithelial-mesenchymal transition (EMT). RT-qPCR and western blot assay were applied to evaluate the alteration of mRNA and protein of zinc finger E-box binding homeobox 1 (ZEB1), a crucial EMT regulator factor. Co-IP assay was utilized for evaluating the interaction between AMP-activated protein kinase (AMPK) and ZEB1. LncRNA microarray was adopted to detect the potential lncRNA, which facilitates the association between AMPK and ZEB1. Gain- and loss-of-function experiments were performed to evaluate the roles of ZNFX1 antisense RNA 1 (ZFAS1) in EMT and metastasis of PC. Results: The present study reveals that nutrient deprivation including glucose and glutamine deprivation significantly induces EMT of PC cells, which is dependent on stabilization of ZEB1. We further discover that nutrient deprivation induces upregulation of lncRNA ZFAS1, which promotes the association between AMPK and ZEB1 to phosphorylate and stabilize ZEB1 protein. Notably, ZEB1 reciprocally promotes the transcription of ZFAS1 by binding to the promoter of ZFAS1, forming feedback with ZFAS1. Consistently, depletion of ZFAS1 obviously inhibits nutrient deprivation-induced EMT of PC cells and lung metastasis of PC in nude mice. Meanwhile, clinical data displays that ZFAS1 is overexpressed in PC tissues and correlated with high expression of ZEB1 and Vimentin (VIM), low expression of E-cadherin (E-cad), as well as poor prognosis in PC patients. Conclusions: Our study implicates that glucose and glutamine deprivation promotes EMT and metastasis of PC through lncRNA-mediated stabilization of ZEB1.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yong Zeng ◽  
Min Zou ◽  
Yan Liu ◽  
Keting Que ◽  
Yunbing Wang ◽  
...  

Keratin 17 (K17), a member of type I acidic epithelial keratin family, has been reported to be upregulated in many malignant tumors and to be involved in promoting the development of tumors. However, the precise role of K17 in progression of pancreatic cancer is still unknown. In this study, we found that K17 expression was highly expressed in pancreatic cancer tissues and cell lines and that upregulated expression was associated with the pathological grade and poor prognosis. K17 expression served as an independent predictor of pancreatic cancer survival. Meanwhile, we showed that knocking down K17 induced pancreatic cancer cell proliferation, colony formation and tumor growth in xenografts in mice. However, K17 upregulation inhibited pancreatic cancer cell proliferation and colony formation. Further mechanistic study revealed that K17 knockdown promoted cell cycle progression by upregulating CyclinD1 expression and repressed cell apoptosis. However, K17 upregulation suppressed cell cycle progression by decreasing CyclinD1 expression, and induced apoptosis by increasing the levels of cleaved Caspase3. In addition, K17 knockdown promoted pancreatic cancer cell migration and invasion, but K17 upregulation suppressed cell migration and invasion. Moreover, knocking down K17 promoted epithelial-mesenchymal transition (EMT) in pancreatic cancer cell by inhibiting E-cadherin expression and inducing Vimentin expression, and the effects of K17 upregulation were opposite to that of K17downregulation. Taken together, our findings suggest that K17 functions as a potential tumor suppressor, even though it is upregulated in pancreatic cancer.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 7 ◽  
Author(s):  
Chih-Ming Huang ◽  
Chin-Sheng Huang ◽  
Tung-Nien Hsu ◽  
Mao-Suan Huang ◽  
Iat-Hang Fong ◽  
...  

Elevated activity of sterol regulatory element-binding protein 1 (SREBP1) has been implicated in the tumorigenesis of different cancer types. However, the functional roles of SREBP1 in esophageal cancer are not well appreciated. Here, we aimed to investigate the therapeutic potential of SREBP1 and associated signaling in esophageal cancer. Our initial bioinformatics analyses showed that SREBP1 expression was overexpressed in esophageal tumors and correlated with a significantly lower overall survival rate in patients. Additionally, tumor suppressor miR-142-5p was predicted to target SREBP1/ZEB1 and a lower miR-142-5p was correlated with poor prognosis. We then performed in vitro experiments and showed that overexpressing SREBP1 in OE33 cell line led to increased abilities of colony formation, migration, and invasion; the opposite was observed in SREBP1-silenced OE21cells and SREBP1-silencing was accompanied by the reduced mesenchymal markers, including vimentin (Vim) and ZEB1, while E-cadherin and tumor suppressor miR-142-5p were increased. Subsequently, we first demonstrated that both SREBP1 and ZEB1 were potential targets of miR-142-5p, followed by the examination of the regulatory circuit of miR-142-5p and SREBP1/ZEB1. We observed that increased miR-142-5p level led to the reduced tumorigenic properties, such as migration and tumor sphere formation, and both observations were accompanied by the reduction of ZEB1 and SREBP1, and increase of E-cadherin. We then explored the potential therapeutic agent targeting SREBP1-associated signaling by testing fatostatin (4-hydroxytamoxifen, an active metabolite of tamoxifen). We found that fatostatin suppressed the cell viability of OE21 and OE33 cells and tumor spheres. Interestingly, fatostatin treatment reduced CD133+ population in both OE21 and OE33 cells in concert of increased miR-142-5p level. Finally, we evaluated the efficacy of fatostatin using a xenograft mouse model. Mice treated with fatostatin showed a significantly lower tumor burden and better survival rate as compared to their control counterparts. The treatment of fatostatin resulted in the reduced staining of SREBP1, ZEB1, and Vim, while E-cadherin and miR-142-5p were increased. In summary, we showed that increased SREBP1 and reduced miR-142-5p were associated with increased tumorigenic properties of esophageal cancer cells and poor prognosis. Preclinical tests showed that suppression of SREBP1 using fatostatin led to the reduced malignant phenotype of esophageal cancer via the reduction of EMT markers and increased tumor suppressor, miR-142-5p. Further investigation is warranted for the clinical use of fatostatin for the treatment of esophageal malignancy.


2018 ◽  
Vol 48 (2) ◽  
pp. 838-846 ◽  
Author(s):  
Yuan He ◽  
Hao Hu ◽  
Yandong Wang ◽  
Hao Yuan ◽  
Zipeng Lu ◽  
...  

Background/Aims: Mounting evidence suggests that epitranscriptional modifications regulate multiple cellular processes. N6-Methyladenosine (m6A), the most abundant reversible methylation of mRNA, has critical roles in cancer pathogenesis. However, the mechanisms and functions of long non-coding RNA (lncRNA) methylation remain unclear. Pancreatic cancer resulted in 411,600 deaths globally in 2015. By the time of pancreatic cancer diagnosis, metastasis has often occurred in other parts of the body. The present study sought to investigate lncRNA m6A modification and its roles in pancreatic cancer. Methods: Differential expression between cancer cells and matched normal cells was evaluated to identify candidate lncRNAs. The lncRNA KCNK15-AS1 was detected in cancer tissues and various pancreatic cells using RT-qPCR. KCNK15-AS1 was transfected into cells to explore its role in migration and invasion. Then, m6A RNA immunoprecipitation was performed to detect methylated KCNK15-AS1 in tissues and cells. Epithelial–mesenchymal transition (EMT) markers were used to evaluate KCNK15-AS1-mediated EMT processes. Results: KCNK15-AS1 was downregulated in pancreatic cancer tissues compared with paired adjacent normal tissues. KCNK15-AS1 inhibited migration and invasion in MIA PaCa-2 and BxPC-3 cells. Furthermore, total RNA methylation in cancer cells was significantly enriched relative to that in immortalized human pancreatic duct epithelial (HPDE6-C7) cells. In addition, the m6A eraser ALKBH5 was downregulated in cancer cells, which can demethylate KCNK15-AS1 and regulate KCNK15-AS1-mediated cell motility. Conclusion: Our results have revealed a novel mechanism by which ALKBH5 inhibits pancreatic cancer motility by demethylating lncRNA KCNK15-AS1, identifying a potential therapeutic target for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document